Absorption enhancement of silicon solar cell with Ag nanoparticles by surface plasmons resonance

Zong-heng Yuan , Xiao-nan Li , Jing Huang

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (6) : 405 -409.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (6) : 405 -409. DOI: 10.1007/s11801-013-3160-x
Article

Absorption enhancement of silicon solar cell with Ag nanoparticles by surface plasmons resonance

Author information +
History +
PDF

Abstract

The absorption enhancements of silicon layer in silicon solar cells with three kinds of Ag nanoparticles including sphere, cylinder and cuboid are studied by the finite difference time domain (FDTD) method, respectively. The results show that the light absorption of silicon is significantly improved due to the localized surface plasmon (LSP) resonance. The relations of the absorption enhancement with the parameters of nanoparticles are thoroughly analyzed. The optimal absorption enhancement can be achieved by adjusting the relevant parameters. Among the three types of Ag nanoparticles, i.e., sphere, cylinder and cuboid, the silicon with the cubical Ag nanopaticles shows the most efficient absorption enhancement at optimal conditions, its maximum absorption enhancement factor is 1.35, and that with the spherical Ag nanopaticles gets the lowest absorption enhancement. The work is useful for the further theoretical study and design for the plasmonic thin-film solar cell.

Keywords

Solar Cell / Silicon Solar Cell / Finite Difference Time Domain / Absorption Enhancement / Nanoparticle Array

Cite this article

Download citation ▾
Zong-heng Yuan, Xiao-nan Li, Jing Huang. Absorption enhancement of silicon solar cell with Ag nanoparticles by surface plasmons resonance. Optoelectronics Letters, 2013, 9(6): 405-409 DOI:10.1007/s11801-013-3160-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

XuR, WangX, SongL, LiuW, JiA, YangF, LiJ. Opt. Express, 2012, 20: 5061

[2]

Cortés-JuanF, RamosC C, ConnollyJ P, DavidC, AbajoF J G d, HurtadoJ, MihailetchiV D, Ponce-AlcántaraS, SánchezG. Journal of Renewable and Sustainable Energy, 2013, 5: 033116

[3]

DingG-j, QinW-j, YangL-y, HuangK, YinS-g. Journal of Optoelectronics ·Laser, 2012, 23: 1786

[4]

KuoM Y, HsingJ Y, ChiuT T, LiC N, KuoW T, LayT S, ShihM H. Opt. Express, 2012, 20: A828

[5]

LiC, XiaL, GaoH, ShiR, SunC, ShiH, DuC. Opt. Express, 2012, 20: A589

[6]

TsengP-C, TsaiM-A, YuP, KuoH-C. Progress in Photovoltaics: Research and Applications, 2012, 20: 135

[7]

JovanovV, PalanchokeU, MagnusP, StiebigH, HüpkesJ, SichanugristP, KonagaiM, WiesendangerS, RockstuhlC, KnippD. Opt. Express, 2013, 21: A595

[8]

LinX-y, HuangQ, ZhangD-k, MuC, ZhaoY, ZhangC-s, ZhangX-d. Journal of Optoelectronics·Laser, 2012, 24: 523

[9]

WiesendangerS, ZilkM, PertschT, RockstuhlC, LedererF. Opt. Express, 2013, 21: A450

[10]

SongB S, YamadaS, AsanoT, NodaS. Opt. Express, 2011, 19: 11084

[11]

ZengL, YiY, HongC, LiuJ, FengN, DuanX, KimerlingL C, AlamariuB A. Appl. Phys. Lett., 2006, 89: 111111

[12]

TsaiF-J, WangJ-Y, HuangJ-J, KiangY-W, YangC C. Opt. Express, 2010, 18: A207

[13]

SpinelliP, FerryV E, van de GroepJ, van LareM, VerschuurenM A, SchroppR E I, AtwaterH A, PolmanA. Journal of Optics, 2012, 14: 024002

[14]

KimR S, ZhuJ, ParkJ H, LiL, YuZ, ShenH, XueM, WangK L, ParkG, AndersonT J, PeiQ. Opt. Express, 2012, 20: 12649

[15]

ZhengG, XuL, LaiM, ChenY, LiuY, LiX. Opt. Communications, 2012, 285: 2755

[16]

SchollJ A, KohA L, DionneJ A. Nature, 2012, 483: 421

[17]

PalikE D. Handbook of Optical Constants of Solids, 1991, Boston, Academic Press

[18]

Reference Solar Spectral Irradiance: ASTM G-173, 2003, http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/