Extraction of optimized parameters for Si0.6Ge0.4 material and SPP mode propagation through Si0.6Ge0.4/Ag/Si0.6Ge0.4 waveguide

Md. Ghulam Saber, Rakibul Hasan Sagor

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (6) : 454-457.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (6) : 454-457. DOI: 10.1007/s11801-013-3152-x
Article

Extraction of optimized parameters for Si0.6Ge0.4 material and SPP mode propagation through Si0.6Ge0.4/Ag/Si0.6Ge0.4 waveguide

Author information +
History +

Abstract

The Lorentz model and modified Debye model (MDM) parameters for Si0.6Ge0.4 are presented. A nonlinear optimization algorithm is developed. The obtained parameters are used to determine the complex relative permittivity of Si0.6Ge0.4, and compared with the experimental data for validation. Finally the obtained parameters are used to analyze the properties of symmetric surface plasmon polariton (SPP) mode propagation in a dielectric-metal-dielectric (DMD) material constructed with silver (Ag) and Si0.6Ge0.4 for further verifying the extracted parameters.

Keywords

Root Mean Square / Electric Field Strength / Root Mean Square Deviation / Surface Plasmon Polariton / Surface Plasmon Polariton Mode

Cite this article

Download citation ▾
Md. Ghulam Saber, Rakibul Hasan Sagor. Extraction of optimized parameters for Si0.6Ge0.4 material and SPP mode propagation through Si0.6Ge0.4/Ag/Si0.6Ge0.4 waveguide. Optoelectronics Letters, 2013, 9(6): 454‒457 https://doi.org/10.1007/s11801-013-3152-x

References

[1]
BarnesW L, DereuxA, EbbesenT W. Nature, 2003, 424: 824
CrossRef Google scholar
[2]
GramotnevD K, BozhevolnyiS I. Nature Photonics, 2010, 4: 83
CrossRef Google scholar
[3]
MaierS A. Plasmonics: Fundamentals and Applications, Springer, 2007,
[4]
HaesA J, Van DuyneR P. Journal of the American Chemical Society, 2002, 124: 10596
CrossRef Google scholar
[5]
HosseiniA, MassoudY. Opt. Express, 2006, 14: 11318
CrossRef Google scholar
[6]
BlaikieR J, MelvilleD O. Journal of Optics A: Pure and Applied Optics, 2005, 7: S176
CrossRef Google scholar
[7]
MelvilleD O, BlaikieR J. Opt. Express, 2005, 13: 2127
CrossRef Google scholar
[8]
HenzieJ, LeeM H, OdomT W. Nature Nanotechnology, 2007, 2: 549
CrossRef Google scholar
[9]
ChouS Y, DingW. Opt. Express, 2013, 21: A60
CrossRef Google scholar
[10]
FerryV E, SweatlockL A, PacificiD, AtwaterH A. Nano Letters, 2008, 8: 4391
CrossRef Google scholar
[11]
WestP R, IshiiS, NaikG V, EmaniN K, ShalaevV M, BoltassevaA. Laser & Photonics Reviews, 2010, 4: 795
CrossRef Google scholar
[12]
GuoW, LuQ, NawrockaM, AbdullaevA, O’CallaghanJ, LynchM, WeldonV, DoneganJ, CrumpP, HengesbachS. Photonics Technology Letters, 2012, 24: 628
CrossRef Google scholar
[13]
YeeK. IEEE Transactions on Antennas and Propagation, 1966, 14: 302
[14]
PalikE D. Handbook of Optical Constants of Solids, 1998,
[15]
BerengerJ P. Journal of Computational Physics, 1994, 114: 185
CrossRef Google scholar
[16]
TafloveA, HagnessS C. Computational Electrodynamics, 2000, London, Artech House Boston

Accesses

Citations

Detail

Sections
Recommended

/