Synthesis and photoluminescence properties of wash-board belt-like ZnSe nanostructures

Hui Zhang, Jia-qing Mo, Xiao-yi Lü

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (6) : 401-404.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (6) : 401-404. DOI: 10.1007/s11801-013-3144-x
Article

Synthesis and photoluminescence properties of wash-board belt-like ZnSe nanostructures

Author information +
History +

Abstract

Washboard belt-like zinc selenide (ZnSe) nanostructures are successfully prepared by a simple chemical vapor deposition (CVD) technology without catalyst. The phase compositions, morphologies and optical properties of the nanostructures are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) spectroscop, respectively. A vapor-liquid mechanism is proposed for the formation of ZnSe belt-like structures. Strong PL from the ZnSe nanostructure can be tuned from 462 nm to 440 nm with temperature varying from 1000 °C to 1200 °C, and it is demonstrated that the washboard belt-like ZnSe nanostructures have potential applications in optical and sensory nanotechnology. This method is expected to be applied to the synthesis of other II–VI groups or other group’s semiconducting materials.

Keywords

ZnSe / Zinc Selenide / Typical Scanning Electron Microscope Image / Chemical Vapor Deposi / Short Nanorods

Cite this article

Download citation ▾
Hui Zhang, Jia-qing Mo, Xiao-yi Lü. Synthesis and photoluminescence properties of wash-board belt-like ZnSe nanostructures. Optoelectronics Letters, 2013, 9(6): 401‒404 https://doi.org/10.1007/s11801-013-3144-x

References

[1]
SuQ, LiL, LiS, ZhaoH. Materials Letters, 2013, 92: 338
CrossRef Google scholar
[2]
FengG, YangC, ZhouS. Nano Lett., 2013, 13: 272
CrossRef Google scholar
[3]
HaoJ, ZhengJ, WangC, XuZ, WuG, CaoC. Journal of Optoelectronics ·Laser, 2012, 23: 1780
[4]
LieberC M. Nano Lett., 2002, 2: 81
CrossRef Google scholar
[5]
LiW, HanY, LuoY. Journal of Optoelectronics ·Laser, 2013, 23: 1042
[6]
BjörkM T, OhlssonB J, SassT, PerssonA I, ThelanderC, MagnussonM H, DeppertK, WallenbergL R, SamuelsonL. Nano Lett., 2002, 2: 87
CrossRef Google scholar
[7]
XiongS, ShenJ, XieQ, GaoY, TangQ, QianY T. Adv. Funct. Mater., 2005, 15: 1787
CrossRef Google scholar
[8]
ChenL, ZhangW, FengC, YangZ, YangY. Ind. Eng. Chem. Res., 2012, 51: 4208
CrossRef Google scholar
[9]
JiangF, MuscatA J. Langmuir, 2012, 28: 12931
CrossRef Google scholar
[10]
ChenL, LaiJ S, FuX N, SunJ, YingZ F, WuJ D, LuH, XuN. Thin Solid Films, 2013, 529: 76
CrossRef Google scholar
[11]
YehC-Y, LuZ W, FroyenS, ZungerA. Phys. Rev. B, 1992, 46: 10086
CrossRef Google scholar
[12]
WagnerR S, EllisW C. Appl. Phys. Lett., 1964, 4: 89
CrossRef Google scholar
[13]
DuanX, LieberC M. J. Am. Chem. Soc., 2000, 122: 188
CrossRef Google scholar
[14]
MaC, MooreD, LiJ, WangZ L. Adv. Mater., 2003, 15: 228
CrossRef Google scholar
[15]
FujitaS, MimotoH, NoguchiT. J. Appl. Phys., 1979, 50: 1079
CrossRef Google scholar
[16]
KludeM, HommelD. Appl. Phys. Lett., 2001, 79: 2523
CrossRef Google scholar
[17]
MazherJ, BadweS, SengarR, GuptaD, PandeyRK. Physica E, 2003, 16: 209
CrossRef Google scholar
[18]
LiQ, GongX, WangC, WangJ, IpK, HarkS. Adv. Mater., 2004, 16: 1436
CrossRef Google scholar
[19]
ZhangX T, IpK M, LiuZ, LeungY P, LiQ, HarkS K. Appl. Phys. Lett., 2004, 84: 2641
CrossRef Google scholar
[20]
LiX Z, LiF B, YangC L, GeW K. J. Photochem. Photobiol. A, 2001, 141: 209
CrossRef Google scholar
[21]
YuJ-G, YuH-G, ChengB, ZhaoX-J, YuJ C, HoW-K. J. Phys. Chem. B, 2003, 107: 13871
CrossRef Google scholar

This work has been supported by the Xinjiang Science and Technology Project (No.2012211B01).

Accesses

Citations

Detail

Sections
Recommended

/