Synthesis and photoluminescence properties of wash-board belt-like ZnSe nanostructures

Hui Zhang , Jia-qing Mo , Xiao-yi Lü

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (6) : 401 -404.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (6) : 401 -404. DOI: 10.1007/s11801-013-3144-x
Article

Synthesis and photoluminescence properties of wash-board belt-like ZnSe nanostructures

Author information +
History +
PDF

Abstract

Washboard belt-like zinc selenide (ZnSe) nanostructures are successfully prepared by a simple chemical vapor deposition (CVD) technology without catalyst. The phase compositions, morphologies and optical properties of the nanostructures are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) spectroscop, respectively. A vapor-liquid mechanism is proposed for the formation of ZnSe belt-like structures. Strong PL from the ZnSe nanostructure can be tuned from 462 nm to 440 nm with temperature varying from 1000 °C to 1200 °C, and it is demonstrated that the washboard belt-like ZnSe nanostructures have potential applications in optical and sensory nanotechnology. This method is expected to be applied to the synthesis of other II–VI groups or other group’s semiconducting materials.

Keywords

ZnSe / Zinc Selenide / Typical Scanning Electron Microscope Image / Chemical Vapor Deposi / Short Nanorods

Cite this article

Download citation ▾
Hui Zhang, Jia-qing Mo, Xiao-yi Lü. Synthesis and photoluminescence properties of wash-board belt-like ZnSe nanostructures. Optoelectronics Letters, 2013, 9(6): 401-404 DOI:10.1007/s11801-013-3144-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SuQ, LiL, LiS, ZhaoH. Materials Letters, 2013, 92: 338

[2]

FengG, YangC, ZhouS. Nano Lett., 2013, 13: 272

[3]

HaoJ, ZhengJ, WangC, XuZ, WuG, CaoC. Journal of Optoelectronics ·Laser, 2012, 23: 1780

[4]

LieberC M. Nano Lett., 2002, 2: 81

[5]

LiW, HanY, LuoY. Journal of Optoelectronics ·Laser, 2013, 23: 1042

[6]

BjörkM T, OhlssonB J, SassT, PerssonA I, ThelanderC, MagnussonM H, DeppertK, WallenbergL R, SamuelsonL. Nano Lett., 2002, 2: 87

[7]

XiongS, ShenJ, XieQ, GaoY, TangQ, QianY T. Adv. Funct. Mater., 2005, 15: 1787

[8]

ChenL, ZhangW, FengC, YangZ, YangY. Ind. Eng. Chem. Res., 2012, 51: 4208

[9]

JiangF, MuscatA J. Langmuir, 2012, 28: 12931

[10]

ChenL, LaiJ S, FuX N, SunJ, YingZ F, WuJ D, LuH, XuN. Thin Solid Films, 2013, 529: 76

[11]

YehC-Y, LuZ W, FroyenS, ZungerA. Phys. Rev. B, 1992, 46: 10086

[12]

WagnerR S, EllisW C. Appl. Phys. Lett., 1964, 4: 89

[13]

DuanX, LieberC M. J. Am. Chem. Soc., 2000, 122: 188

[14]

MaC, MooreD, LiJ, WangZ L. Adv. Mater., 2003, 15: 228

[15]

FujitaS, MimotoH, NoguchiT. J. Appl. Phys., 1979, 50: 1079

[16]

KludeM, HommelD. Appl. Phys. Lett., 2001, 79: 2523

[17]

MazherJ, BadweS, SengarR, GuptaD, PandeyRK. Physica E, 2003, 16: 209

[18]

LiQ, GongX, WangC, WangJ, IpK, HarkS. Adv. Mater., 2004, 16: 1436

[19]

ZhangX T, IpK M, LiuZ, LeungY P, LiQ, HarkS K. Appl. Phys. Lett., 2004, 84: 2641

[20]

LiX Z, LiF B, YangC L, GeW K. J. Photochem. Photobiol. A, 2001, 141: 209

[21]

YuJ-G, YuH-G, ChengB, ZhaoX-J, YuJ C, HoW-K. J. Phys. Chem. B, 2003, 107: 13871

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/