A novel polarizer based on directional coupler and surface plasmon polaritons

Kuo Zhou, Jun-bo Yang, Jian-kun Yang, Xiu-jian Li, Hui Jia, Ju Liu, De-bin Zou, Jia Xu, Jia-li Liao, Wen-jun Yi

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (6) : 430-433.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (6) : 430-433. DOI: 10.1007/s11801-013-3121-4
Article

A novel polarizer based on directional coupler and surface plasmon polaritons

Author information +
History +

Abstract

A novel polarizer with a silver nanoribbon added into a traditional waveguide directional coupler is designed to realize the polarized output of TE mode. A high extinction ratio can be obtained because of the selectivity of surface plasmon polaritons (SPPs) on polarization. The effects of the polarizer parameters on coupling efficiency and extinction ratio are discussed. Simulation results indicate that the coupling efficiency for TE mode can reach about 95%, but only 3% for TM mode, with the extinction ratio of TE mode about 15 dB when the light wavelength is 1550 nm. The polarizer may have potential applications in photonic integrated circuits and quantum information technology.

Keywords

Surface Plasmon Polaritons / Directional Coupler / Coupling Efficiency / Extinction Ratio / Coupling Region

Cite this article

Download citation ▾
Kuo Zhou, Jun-bo Yang, Jian-kun Yang, Xiu-jian Li, Hui Jia, Ju Liu, De-bin Zou, Jia Xu, Jia-li Liao, Wen-jun Yi. A novel polarizer based on directional coupler and surface plasmon polaritons. Optoelectronics Letters, 2013, 9(6): 430‒433 https://doi.org/10.1007/s11801-013-3121-4

References

[1]
ZhangH-l, ZhouW, YangJ-b, LiX-j, TanJ-c. Journal of Optoelectronics·Laser, 2011, 22: 1483
[2]
IwamiK, IshiiM, KuramochiY, IdaK, UmedaN. Appl. Phys. Lett., 2012, 101: 161119-1
CrossRef Google scholar
[3]
LiuJ, ChenB-x, YangH-m. Journal of Optoelectronics·Laser, 2011, 22: 1821
[4]
WangB, WangG P. Opt. Lett., 2005, 29: 1992
CrossRef Google scholar
[5]
ChenM, LiuZ-C. Optoelectron. Lett., 2012, 8: 0017
CrossRef Google scholar
[6]
XiaoJ-B, LiW-L, XiaS-S, SunX-H. Acta Phys. Sin., 2012, 61: 124216-1
[7]
WangL-W, LouS-Q, ChenW-G, LuW-L, WangX. Acta Phys. Sin., 2012, 61: 154207-1
[8]
WangQ-Y, WangJ, ZhangS-L. Optical Technique, 2009, 35: 163
[9]
LeeK J, LaCombR, BrittonB, Shokooh-SaremiM, SilvaH, DonkorE, DingY, MagnussonR. IEEE Photonics Technology Letters, 2008, 20: 1857
CrossRef Google scholar
[10]
SunB, ChenM-Y, YuR-J, ZhangY-K, ZhouJ. Optoelectron. Lett., 2011, 7: 0253
CrossRef Google scholar
[11]
LeeK J, CurzanJ. Mehrdad Shokooh-Saremi and Robert MagnussonAppl. Phys. Lett., 2011, 98: 211112-1
CrossRef Google scholar
[12]
SnyderA W, LoveJ D. Optical Waveguide Theory, 1983, New York, Chapman and Hall: 576
[13]
JohnsonP B, ChristieR W. Phys. Rev. B, 1972, 6: 4370
CrossRef Google scholar
[14]
LiangG-F, ZhaoQ, ChenX, WangC-T, ZhaoZ-Y, LuoX-G. Acta Phys. Sin., 2012, 61: 104203

This work has been supported by the National Natural Science Foundation of China (Nos.60907003, 61070040 and 61107005), and the Program for New Century Excellent Talents in University.

Accesses

Citations

Detail

Sections
Recommended

/