Electroluminescence enhancement in blue phosphorescent organic light-emitting diodes based on different hosts

Wei Zhang, Fang-hui Zhang, Jin Huang, Mai-li Zhang, Ying Ma

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 346-349.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 346-349. DOI: 10.1007/s11801-013-3113-4
Article

Electroluminescence enhancement in blue phosphorescent organic light-emitting diodes based on different hosts

Author information +
History +

Abstract

Blue phosphorescent organic light-emitting diodes (OLEDs) are fabricated by utilizing the hole transport-type host material of 1,3-bis(carbazol-9-yl)benzene (MCP) combined with the electron transport-type host material of 1,3-bis (triphenylsilyl) benzene (UGH3) with the ratios of 1:0, 8:2 and 6:4, and doping with blue phosphorescent dopant of bis(4,6-difluorophenylpyridinato-N,C2)picolinatoiridium (FIrpic). The device with an optimum concentration proportion of MCP:UGH3 of 8:2 exhibits the maximum current efficiency of 19.18 cd/A at luminance of 35.71 cd/m2 with maintaining Commission Internationale de L’Eclairage (CIE) coordinates of (0.1481, 0.2695), which is enhanced by 35.7% compared with that of 1:0 with (0.1498, 0.2738). The improvements are attributed to the effective carrier injection and transport in emitting layer (EML) because of mixed host materials. In addition, electron and exciton are confined in the EML, and 4,4′,4″-Tris(carbazol-9-yl)-triphenylamine (TCTA) and Di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexane (TAPC) have the high lowest unoccupied molecular orbital (LUMO) energy level and triplet exiton energy.

Keywords

High Occupied Molecular Orbital / Triphenylamine / Triplet Exciton / Longe Wavelength Absorption Band / High Occupied Molecular Orbital Level

Cite this article

Download citation ▾
Wei Zhang, Fang-hui Zhang, Jin Huang, Mai-li Zhang, Ying Ma. Electroluminescence enhancement in blue phosphorescent organic light-emitting diodes based on different hosts. Optoelectronics Letters, 2013, 9(5): 346‒349 https://doi.org/10.1007/s11801-013-3113-4

References

[1]
LvY-F, ZhouP-C, WeiN, PengK-J, YuJ-N, WeiB, WangZ-X, LiC. Organic Electronics, 2013, 14: 124
CrossRef Google scholar
[2]
KrucaiteG, GrinieneR, MazetyteD, PuckyteG, GrazuleviciusJ V, HsiehY C, ChenY L, JouJ H, GrigaleviciusS. Sythetic Metals, 2012, 162: 1079
CrossRef Google scholar
[3]
SonY H, ParkM J, KimY J, YangJ H, ParkJ S, KwonJ H. Organic Electronics, 2013, 14: 1183
CrossRef Google scholar
[4]
ZhaoJ, YuJ-s, LiL, JiangY-d. Journal of Optoelectronics·Laser, 2011, 22: 170
[5]
LeeJ, LeeJ-I, ChuH Y. Sythetic Metals, 2009, 11: 991
CrossRef Google scholar
[6]
JiaoZ-q, WuX-m, HuaY-l, BiW, MuX, BaiJ-j, YinS-g. Journal of Optoelectronics·Laser, 2012, 23: 1252
[7]
ChenY-h, ChenJ-s, ZhaoY-b, MaD-g. Appl. Phys. Lett., 2012, 100: 213301
CrossRef Google scholar
[8]
ZhaoB, SuZ, LiW, ChuB, JinF, YanX, ZhangF, FanD, ZhangT, GaoY, WangJ. Appl. Phys. Lett., 2012, 101: 053310
CrossRef Google scholar
[9]
TongaQ-X, LaiS-L, LoM-F, ChanM-Y, NgT-W, LeeS-T, TaoS-L, LeeC-S. Sythetic Metals, 2012, 162: 415
CrossRef Google scholar
[10]
MeunmartD, PrachumrakN, KeawinT, JungsuttiwongS, SudyoadsukT, PromarkV. Tetrahedron Letters, 2012, 53: 3615
CrossRef Google scholar
[11]
LeeJ, LeeJ-I, LeeJ-W, ChuH Y. Organic Electronics, 2010, 7: 1159
CrossRef Google scholar
[12]
ChenS-j, YuJ-s, WenW, JiangY-d. Acta Phys. Sin., 2011, 60: 037202

This work has been supported by the National Natural Science Foundation of China (No.61076066), and the Co-ordinator Innovation Project and Plan Project of Shaanxi Province (No.2011KTCQ01-09).

Accesses

Citations

Detail

Sections
Recommended

/