A novel QC-LDPC code based on the finite field multiplicative group for optical communications

Jian-guo Yuan , Liang Xu , Qing-zhen Tong

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 378 -380.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 378 -380. DOI: 10.1007/s11801-013-3102-7
Article

A novel QC-LDPC code based on the finite field multiplicative group for optical communications

Author information +
History +
PDF

Abstract

A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) code is proposed based on the finite field multiplicative group, which has easier construction, more flexible code-length code-rate adjustment and lower encoding/decoding complexity. Moreover, a regular QC-LDPC(5334,4962) code is constructed. The simulation results show that the constructed QC-LDPC(5334,4962) code can gain better error correction performance under the condition of the additive white Gaussian noise (AWGN) channel with iterative decoding sum-product algorithm (SPA). At the bit error rate (BER) of 10−6, the net coding gain (NCG) of the constructed QC-LDPC(5334,4962) code is 1.8 dB, 0.9 dB and 0.2 dB more than that of the classic RS(255,239) code in ITU-T G.975, the LDPC(32640,30592) code in ITU-T G.975.1 and the SCG-LDPC(3969,3720) code constructed by the random method, respectively. So it is more suitable for optical communication systems.

Keywords

Finite Field / Additive White Gaussian Noise / Forward Error Correction / LDPC Code / Cyclic Shift

Cite this article

Download citation ▾
Jian-guo Yuan, Liang Xu, Qing-zhen Tong. A novel QC-LDPC code based on the finite field multiplicative group for optical communications. Optoelectronics Letters, 2013, 9(5): 378-380 DOI:10.1007/s11801-013-3102-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GallagerR G. IEEE Transactions on Information Theory, 1962, 8: 21

[2]

ChenX, LauF C M. Construction of High-Rate QC-LDPC Codes2011 IEEE International Conference on Advanced Technologies for Communications, 2011, 24

[3]

FossorierM P C. IEEE Transaction on Information Theory, 2004, 50: 1788

[4]

DjordjevicI B, ArabaciM, MinkovL L. Journal of Lightwave Technology, 2009, 27: 3518

[5]

RyanW E, LinS. Channel Codes Classical and Modern, 2009, England, Cambridge University Press: 523

[6]

LanL, ZengL, TaiY Y. IEEE Trans. Inform. Theory, 2007, 53: 2429

[7]

SongS, ZhouB, LinS. IEEE Trans. Commun., 2009, 57: 71

[8]

KangJ, HuangQ, LinS. IEEE Trans. Commun., 2010, 58: 1383

[9]

YuanJ-g, YeW-w. Journal of ChongQing University of Posts and Telecommunications (Natural Science Edition), 2008, 20: 78

[10]

YuanJ-g, WangW, LiangT-y. Journal of Optoelectronics·Laser, 2012, 23: 906

[11]

YuanJ-g, WangW, TangB, LiangT-y, WangY. Journal of Optoelectronics ·Laser, 2012, 23: 1304

[12]

YuanJ-g, XieY, WangL, HuangS, WangY. Optoelectronics Letters, 2013, 9: 42

[13]

ITU-T G.975. Forward Error Correction for Submarine Systems, 2000,

[14]

ITU-T G.975.1. Forward Error Correction for High Bit-Rate DWDM Submarine Systems, 2004,

[15]

YuanJ-g, TongQ-z, XuL, HuangS. Optoelectronics Letters, 2013, 9: 204

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/