Enhanced emission of 2.9 μm from Ho3+/Pr3+ co-doped LiYF4 crystal excited by 640 nm

Jiang-tao Peng , Hai-ping Xia , Pei-yuan Wang , Hao-yang Hu , Lei Tang , Yue-pin Zhang , Hao-chuan Jiang , Bao-jiu Chen

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 362 -366.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 362 -366. DOI: 10.1007/s11801-013-3101-8
Article

Enhanced emission of 2.9 μm from Ho3+/Pr3+ co-doped LiYF4 crystal excited by 640 nm

Author information +
History +
PDF

Abstract

The use of Pr3+ co-doping for great enhancement of mid-infrared (mid-IR) emissions at 2.9 μm and 2.4 μm is investigated in the Ho3+/Pr3+ co-doped LiYF4 crystals. With the introduction of Pr3+ ions, the fluorescence lifetime of Ho3+:5I7 level is 2.15 ms for Ho3+/Pr3+co-doped crystal, and the lifetime for Ho3+ singly doped crystal is 17.70 ms, while the lifetime of Ho3+:5I6 level decreases slightly from 2.11 ms for Ho3+:LiYF4 to 1.83 ms for Ho3+/Pr3+:LiYF4. It is also demonstrated that the introduction of Pr3+ greatly increases the mid-infrared emission of Ho3+:5I65I7 which depopulates the Ho3+:5I7 level, while it has little influence on the Ho3+:5I6 level, which is beneficial for greater population inversion and laser operation. The analysis on the decay curves of the 2.0 μm emissions in the framework of the Inokuti-Hirayama model indicates that the energy transfer from Ho3+ to Pr3+ is mainly from electric dipole-dipole interaction. The calculated efficiency of energy transfer from Ho3+:5I7 to Pr3+:3F2 level is 87.53% for Ho3+/Pr3+ (1.02%/0.22%) co-doped sample. Our results suggest that the Ho3+/Pr3+ co-doped LiYF4 single crystals may have potential applications in mid-IR lasers.

Keywords

Lower Laser Level / Laser Level / Emission Cross Section / Fluorescence Decay Curve / Oxyfluoride Glass

Cite this article

Download citation ▾
Jiang-tao Peng, Hai-ping Xia, Pei-yuan Wang, Hao-yang Hu, Lei Tang, Yue-pin Zhang, Hao-chuan Jiang, Bao-jiu Chen. Enhanced emission of 2.9 μm from Ho3+/Pr3+ co-doped LiYF4 crystal excited by 640 nm. Optoelectronics Letters, 2013, 9(5): 362-366 DOI:10.1007/s11801-013-3101-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangX, LinH, YangD, LinL, PunE Y B. J. Appl. Phys., 2007, 101: 113535

[2]

LeeT H, HeoJ. Phys. Rev. B, 2006, 73: 144201

[3]

ChoiY G, ParkB J, KimK H. Opt. Lett., 2003, 28: 622

[4]

KarayianisN, WortmanD E, JenssenH P. J. Phys. Chem. Solids, 1976, 37: 675

[5]

JagosichF H, GomesL, TarelhoL V G, CourrolL C, RanieriI M. J. Appl. Phys., 2002, 91: 624

[6]

JacksonS D. Electron. Lett., 2003, 39: 772

[7]

FangQ H, ChenH B, XuF. Chin. Opt. Lett., 2010, 8: 1071

[8]

ZhuangX B, XiaH P, HuH Y, HuJ X, WangP Y, PengJ T, ZhangY P, JiangH C, ChenB J. Mater. Sci. Eng. B, 2013, 178: 326

[9]

McCumberD E. Phys. Rev., 1964, 136: A954

[10]

WalshB M, BarnesN P, BartoloB D. J. Appl. Phys., 1998, 83: 2786

[11]

MaX H, ZhuZ J, LiJ F, YouZ Y, WangY, TuC Y. Mater. Res. Bull., 2009, 44: 571

[12]

LiJ F, JiaG H, ZhuZ J, YouZ Y, WangY, WuB C, TuC Y. J. Phys. D: Appl. Phys., 2007, 40: 1902

[13]

JohnsonL F, GeusicJ E, Van UitertL G. Appl. Phys. Lett., 1966, 8: 200

[14]

TsangY, RichardsB, BinksD, LousteauJ, JhaA. Opt. Lett., 2008, 33: 1282

[15]

DriesenK, TikhomirovV K, Gorller-WalrandC, RodriguezV D, SeddonAB. Appl. Phys. Lett., 2006, 88: 073111

[16]

TarelhoL V, GomesL, RanieriI M. Phys. Rev. B, 1997, 56: 14344

[17]

Henriques LibrantzA F, JacksonS D, JagosichF H, GomesL, PoirierG, RibeiroS J L, MessaddeqY. J. Appl. Phys., 2007, 101: 1231117

[18]

TangH, XiaH-p. Optoelectron. Lett., 2012, 8: 456

[19]

InokutiM, HirayamaF. J. Chem. Phys., 1965, 43: 1978

[20]

CarnallW T, FieldsP R, RajnakK. J. Chem. Phys., 1968, 49: 4407

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/