New entangled state representation and its characteristics for the three compatible operators

Dao-ming Lu

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 397-400.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 397-400. DOI: 10.1007/s11801-013-3091-6
Article

New entangled state representation and its characteristics for the three compatible operators

Author information +
History +

Abstract

The eigenvector set of |φ(x, r1, r2)〉 with three compatible operators (

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat x_1 + \hat x_2 + \hat x_3$$\end{document}
,
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat p_2 + \hat p_3 - 2\hat p_1$$\end{document}
and
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat p_3 - \hat p_2$$\end{document}
) is constructed by virtue of Radon transformation of the Wigner operator and the technique of integration within an ordered product (IWOP) of operators. Its entanglement property is then revealed by deriving its standard Schmidt decomposition. |φ(x, r1, r2)〉 makes up a new quantum mechanical representation. A new three-mode squeezing operator is found by using this entangled state representation.

Keywords

Entangle State / Complete Relation / Radon Transformation / Quantum Mechanical Representation / Coherent Entangle State

Cite this article

Download citation ▾
Dao-ming Lu. New entangled state representation and its characteristics for the three compatible operators. Optoelectronics Letters, 2013, 9(5): 397‒400 https://doi.org/10.1007/s11801-013-3091-6

References

[1]
XuS-M, JiangJ-J, LiH-Q, XuX-L. Acta Phys. Sin., 2008, 57: 7430
[2]
LiH-Q, XuS-M, XuX-L, JiangJ-J. Acta Phys. Sin., 2009, 58: 3806
[3]
FanH-Y. Phys. Lett. A, 2002, 294: 253
CrossRef Google scholar
[4]
YuanH-C, XuX-X. Acta Phys. Sin., 2012, 61: 064205
[5]
YangX, XiaoJ-h. Optoelectronics Letters, 2013, 9: 69
CrossRef Google scholar
[6]
LiaoQ-h. Journal of Optoelectronics·Laser, 2012, 23: 757
[7]
SongJ, FanH-Y. Acta Phys. Sin., 2010, 59: 6806
[8]
MengX-G, WangJ-S, Fanh-Y. Physics Letters A, 2007, 361: 183
CrossRef Google scholar
[9]
FanH-Y, YuG-C. Physical Review A, 2002, 65: 033829
CrossRef Google scholar
[10]
LvC-H, FanH-Y. Int. J. Theor. Phys., 2010, 49: 1944
CrossRef Google scholar
[11]
ZhouJ, FanH-Y, SongJ. Int. J. Theor. Phys., 2012, 51: 1591
CrossRef Google scholar
[12]
YuanH C, QiK Q. Commun. Theor. Phys., 2005, 44: 269
CrossRef Google scholar
[13]
ZhangB L, MengX G, WangJ S. Chin. Phys. B, 2012, 21: 030304
CrossRef Google scholar
[14]
YangM, WangJ S, MengX G. International Journal of Theoretical Physics, 2011, 50: 3348
CrossRef Google scholar
[15]
FanH Y, YuanH C. Quantum Mechanics Language, 2011, Shanghai, Shanghai Jiao Tong University Press: 83

This work has been supported by the Natural Science Foundation of Fujian Province (No.2011J01018).

Accesses

Citations

Detail

Sections
Recommended

/