Multi-bandgap photonic materials and devices fabricated by UV-laser induced quantum well intermixing

Mohammad Kaleem, Xin Zhang, You-guang Yang, Yuan Zhuang, Jian-jun He

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 358-361.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 358-361. DOI: 10.1007/s11801-013-3088-1
Article

Multi-bandgap photonic materials and devices fabricated by UV-laser induced quantum well intermixing

Author information +
History +

Abstract

Ultraviolet (UV)-laser induced quantum well intermixing (QWI) technique can generate large multiple bandgap blue shifts in III-V quantum well semiconductor heterostructure. The application of the UV-laser QWI technique to fabricate multi-bandgap photonic devices based on compressively strained InGaAsP/InP quantum well laser microstructure is reported. We show that under certain UV-laser irradiation conditions, the photoluminescence (PL) intensity can be enhanced, and the full width at half maximum (FWHM) linewidth can be reduced. The blue shift of bandgap can reach as large as 145 nm, while the PL intensity is about 51% higher than that of the as-grown material. Experimental results of post growth wafer level processing for the fabrication of bandgap-shifted waveguides and laser diodes are presented.

Keywords

Quantum Well / Rapid Thermal Annealing / Laser Structure / Ridge Waveguide / Group Versus Element

Cite this article

Download citation ▾
Mohammad Kaleem, Xin Zhang, You-guang Yang, Yuan Zhuang, Jian-jun He. Multi-bandgap photonic materials and devices fabricated by UV-laser induced quantum well intermixing. Optoelectronics Letters, 2013, 9(5): 358‒361 https://doi.org/10.1007/s11801-013-3088-1

References

[1]
MarshJ H, KowalskiO P, MacDougallS D, QiuB C, McKeeA, HamiltonC J, De La RueR M, BryceA C. J. Vac. Sci. Technol. A., 1998, 16: 810
CrossRef Google scholar
[2]
MarshJ H. Semicond. Sci. Technol., 1993, 8: 1136
CrossRef Google scholar
[3]
CharbonneauS, KotelesE S, PooleP J, HeJ-J, AersG C, HaysomJ E, BuchananM, FengY, DelageA, YangF, DaviesM, GoldbergR D, PivaP G, MitchellI V. IEEE Journal of Selected Topics in Quantum Electron., 1998, 4: 772
CrossRef Google scholar
[4]
HeJ-J, FengY, KotelesE S, PooleJ P, DavisM, DionM, GoldbergR, MitchellI, CharbonneauS. Electronics Letters, 1995, 31: 2094
CrossRef Google scholar
[5]
ZhangX, HeJ-J. Optical Loss of Bandgap Shifted InGaAsP/InP Waveguide Using Argon Plasma-Enhanced Quantum Well Intermixing, Advances in Optoelectronics and Micro/Nano-Optics, 2010,
[6]
KowalskiO P, HamiltonC J, McDougallS D, MarshJ H, BryceA C, De La RueR M, VogeleB, StanleyC R. Appl. Phys. Lett., 1998, 72: 581
CrossRef Google scholar
[7]
KaleemM, ZhangX, HeJ-J. Bandgap Engineering of InGaAsP/InP Laser Structure by Argon Plasma Induced Point Defects, Asia Communications and Photonics Conference, 2012,
[8]
GenestJ, BealR, AimezV, DubowskiJ J. Appl. Phys. Lett., 2008, 93: 071106
CrossRef Google scholar
[9]
DubowskiJ J, PoolePJ, SprouleGI, MarshallG, MoisaS, LacelleC, BuchananM. Appl. Phys. A, 1999, 69: S299
CrossRef Google scholar
[10]
LiuN, MoumanisK, BlaisS, DubowskiJ J. Proc. SPIE, 2012, 8245: 82450E1
[11]
LiuN, DubowskiJ J. Appl. Surf. Sci., 2013, 270: 16
CrossRef Google scholar

This work has been supported by the Ministry of Science and Technology of China under International Collaborative Research (No.2010DFA61370), the National High-Tech R&D Program of China (No.2013AA014401), and the Natural Science Foundation of Zhejiang Province (No.Z1110276).

Accesses

Citations

Detail

Sections
Recommended

/