Effect of B2O3 on the spectroscopic properties in Er3+/Ce3+ co-doped tellurite-niobium glass

Dan-dan Yin , Shi-chao Zheng , Ya-wei Qi , Sheng-xi Peng , Ya-xun Zhou

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 367 -370.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 367 -370. DOI: 10.1007/s11801-013-3078-3
Article

Effect of B2O3 on the spectroscopic properties in Er3+/Ce3+ co-doped tellurite-niobium glass

Author information +
History +
PDF

Abstract

The high phonon energy oxide of B2O3 is introduced into the Er3+/Ce3+ co-doped tellurite-niobium glasses with composition of TeO2-Nb2O5-ZnO-Na2O. The absorption spectra, 1.53 μm band fluorescence spectra, fluorescence lifetime and Raman spectra of Er3+ in glass samples are measured together with the calculations of Judd-Ofelt spectroscopic parameter, stimulated emission and absorption cross-sections, which evaluate the effect of B2O3 on the 1.53 μm band spectroscopic properties of Er3+. It is shown that the introduction of an appropriate amount of B2O3 can further improve the 1.53 μm band fluorescence intensity through an enhanced phonon-assisted energy transfer (ET) between Er3+/Ce3+ ions. The results indicate that the prepared Er3+/Ce3+ co-doped tellurite-niobium glass with an appropriate amount of B2O3 is a potential gain medium for the 1.53 μm bandbroad erbium-doped fiber amplifier (EDFA).

Keywords

Glass Sample / Band Fluorescence / Phonon Energy / Tellurite Glass / Glass Host

Cite this article

Download citation ▾
Dan-dan Yin, Shi-chao Zheng, Ya-wei Qi, Sheng-xi Peng, Ya-xun Zhou. Effect of B2O3 on the spectroscopic properties in Er3+/Ce3+ co-doped tellurite-niobium glass. Optoelectronics Letters, 2013, 9(5): 367-370 DOI:10.1007/s11801-013-3078-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JhaA, RichardsB, JoseG, Teddy-FernandezT, JoshiP, JiangX, LousteauJ. Progress in Materials Science, 2012, 57: 1426

[2]

LousteauJ, BoettiN G, ChiaseraA, FerrariM, AbrateS, ScarcigliaG, VenturelloA, MilaneseD. IEEE Photonics Journal, 2012, 4: 194

[3]

WangS, ZhouY X, DaiS X, WangX S, ShenX, WuY, XuX C. Journal of Optoelectronics·Laser, 2011, 22: 12

[4]

ShengZ X, HanQ. Journal of Optoelectronics ·Laser, 2011, 22: 512

[5]

SasikalaT, MoorthyL R, PavaniK, ChengaiahT. Journal of Alloys and Compounds, 2012, 542: 271

[6]

ZhouY X, XuX C, WangS. Journal of the Chinese Ceramic Society, 2012, 40: 1011

[7]

ErsunduA E, CelikbilekM, SolakN, AydinS. Journal of the European Ceramic Society, 2011, 31: 2775

[8]

RaviO, ReddyC M, ManojL, RajuB D P. Journal of Molecular Structure, 2012, 53: 1029

[9]

JoshiP, ShenS X, JhaA. Journal of Applied Physics, 2008, 103: 083543

[10]

QiuJ, ShimizugawaY, IwabuchiY, HiraoK. Applied Physics Letters, 1997, 71: 43

[11]

JuddB R. Physical Review, 1962, 127: 750

[12]

OfeltJ S. Journal of Chemical Physics, 1962, 37: 511

[13]

MohanB A, JamalaiahB C, ChengaiahT, ReddyG V L, MoorthyL R. Physica B: Condensed Matter, 2011, 406: 3074

[14]

WatekarP R, JuS, HanW T. Journal of Non-Crystalline Solids, 2008, 354: 1453

[15]

YangJ H, DaiS X, ZhouY F, WenL, HuL L, JiangZ H. Journal of Applied Physics, 2003, 193: 975

[16]

ZouX, LzumitaniT. Journal of Non-Crystalline Solids, 1993, 162: 68

[17]

McCumberD E. Physical Review, 1964, 134: 299

[18]

MiniscaloW J, QuimbyR S. Optics Letters, 1991, 16: 258

[19]

SudoS. Opical Fiber Amplifiers: Materials, Devices and Applications, 1997, Japan, Artech House Publication

[20]

XuT F, ZhangX D, DaiS X, NieQ H, ShenX, ZhangX H. Physica B: Condensed Matter, 2007, 389: 242

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/