Extraordinary optical properties of Fibonacci quasi-periodic 1D superconducting photonic crystals in near-zero-permittivity operation range

Ji-jiang Wu , Jin-xia Gao

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (4) : 289 -292.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (4) : 289 -292. DOI: 10.1007/s11801-013-3066-7
Article

Extraordinary optical properties of Fibonacci quasi-periodic 1D superconducting photonic crystals in near-zero-permittivity operation range

Author information +
History +
PDF

Abstract

In near-zero-permittivity operation range, the position-dependent extraordinary optical properties of a one dimensional (1D) Fibonacci quasi-periodic superconducting photonic crystal (PC), which consists of alternating superconductor and dielectric layers, are theoretically investigated by using the transfer matrix method. Based on the calculated reflectance spectrum, it is shown that the extraordinary optical properties depend on the relative positions of the threshold wavelength and the photonic band gaps (PBGs). By suitably choosing the thickness of the superconducting or dielectric layer, a transmission narrow band filter or resonator can be designed without introducing any physical defect in this structure.

Keywords

Photonic Crystal / Dielectric Layer / Transverse Magnetic / Transverse Electric / Operation Range

Cite this article

Download citation ▾
Ji-jiang Wu, Jin-xia Gao. Extraordinary optical properties of Fibonacci quasi-periodic 1D superconducting photonic crystals in near-zero-permittivity operation range. Optoelectronics Letters, 2013, 9(4): 289-292 DOI:10.1007/s11801-013-3066-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LuX D, ZhouT, LunS X, ChiF. Journal of Optoelectronics·Laser, 2012, 23: 83

[2]

LuX, BiW H, MaS. Journal of Optoelectronics · Laser, 2012, 23: 21

[3]

ZhaoC L. Journal of Optoelectronics·Laser, 2011, 22: 9

[4]

PeiT H, HuangY T. J. Appl. Phys., 2007, 101: 084502

[5]

ChenM S, WuC J, YangT J. Solid State Commun., 2009, 149: 1888

[6]

AlyA H, HsuH T, YangT J, WuC J, HwangboC K. J. Appl. Phys., 2009, 105: 083917

[7]

WangS Y, LiuS B, LiL W J. Chin. Phys. B, 2010, 19: 084101

[8]

LeeH M, WuJ C. J. Appl. Phys., 2010, 107: 09E149

[9]

LinW H, WuC J, YangT J, ChangS J. Opt. Express, 2010, 18: 27155

[10]

ChenM S, WuC J, YangT J. Appl. Phys. A, 2011, 104: 913

[11]

LeeH M, ShyuJ H, HorngL, WuJ C. Appl. Opt., 2011, 50: 3860

[12]

LiC Z, LiuS B, KongX K, BianB R, ZhangX Y. Appl. Opt., 2011, 50: 2370

[13]

LiC Z, LiuS B, KongX K, BianB R, ZhangX Y. Acta Phys. Sin., 2012, 61: 075203

[14]

ZhangH F, LiuS B, KongX K, BianB R, ZhaoX. Progress In Electromagnetics Research B, 2012, 40: 415

[15]

WuJ J, GaoJ X. Optik, 2012, 123: 986

[16]

ThapaK B, SrivastavaS, VishwakarmaA, OjhaS P. Optoelectronics Letters, 2011, 7: 277

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/