A surface plasmon resonance sensor based on a multi-core photonic crystal fiber

Pei-pei Zhang , Jian-quan Yao , Hai-xia Cui , Ying Lu

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 342 -345.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 342 -345. DOI: 10.1007/s11801-013-3052-0
Article

A surface plasmon resonance sensor based on a multi-core photonic crystal fiber

Author information +
History +
PDF

Abstract

A surface plasmon resonance (SPR) sensor based on a multi-core photonic crystal fiber (PCF) is presented in this paper. There is only one analyte channel positioned in the center of the PCF cross section, rather than several closely arranged analyte channels around the central core. So the design of this sensor not only reduces the consumption of gold and samples, but also effectively avoids the interference between neighboring analyte channels. Optical field distributions of this fiber at different wavelengths and the sensing properties of this sensor are theoretically analyzed and discussed using finite element method (FEM). Simulation results confirm that both the thickness of metallic layer and the fiber structural parameters have significant effect on sensing performance. The amplitude sensitivity of the sensor is found to be 1.74×10−5 RIU, and the spectral sensitivity is 3300 nm/RIU, corresponding to a resolution of 3.03×10−5 RIU. Finally, in order to achieve PCF-SPR sensing characteristics, an experiment design scheme based on spectroscopic detection method is proposed.

Keywords

Surface Plasmon Resonance / Photonic Crystal Fiber / Resonance Wavelength / Perfectly Match Layer / Surface Plasmon Resonance Sensor

Cite this article

Download citation ▾
Pei-pei Zhang, Jian-quan Yao, Hai-xia Cui, Ying Lu. A surface plasmon resonance sensor based on a multi-core photonic crystal fiber. Optoelectronics Letters, 2013, 9(5): 342-345 DOI:10.1007/s11801-013-3052-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiedbergB, NylanderC, LunstromI. Sensors and Actuators, 1983, 4: 299

[2]

NylanderC, LiedbergB, LindT. Sensors and Actuators, 1982, 3: 79

[3]

KabashinAV, NikitinP I. Opt. Commun., 1998, 150: 5

[4]

SookyoungR, TaerinC, ByounghoL. Sensors, 2011, 11: 1565

[5]

YongC, HaiM. Photonic Sensors, 2012, 2: 37

[6]

XingJ W, ZhuS, WangT Y, ChenN, ChenZ Y. J. Optoelectron. Laser, 2011, 22: 693

[7]

HautakorpiM, MattinenM, LudvigsenH. Opt. Express, 2008, 16: 8427

[8]

BingP-b, LiZ-y, YaoJ-q, LuY, DiZ-g, YanX. Optoelectronics Letters, 2012, 8: 245

[9]

ZhangY, XiaL, ZhouC, YuX, LiuH, LiuD, ZhangY. Opt. Commun., 2011, 284: 4161

[10]

LuY, HaoC-J, WuB-Q, HuangX-H, WenW-Q, FuX-Y, YaoJ-Q. Sensors, 2012, 12: 12016

[11]

YuX, ZhangY, PanS, ShumP, YanM, LeviatanY, LiC. J. Opt., 2010, 12: 1

[12]

WeiW, ZhangX, GuoX, ZhengL, GaoJ, ShiW, WangQ, HuangY, RenX. Optik, 2012, 123: 1167

[13]

HassaniA, SkorobogatiyM. Opt. Express, 2006, 14: 11616

[14]

HassaniA, SkorobogatiyM. J. Opt. Soc. Am. B, 2007, 24: 1423

[15]

ErdmanisM, ViegasD, HautakorpiM, NovotnyS, SantosJ L, LudvigsenH. Opt. Express, 2011, 19: 13980

[16]

ZhouC, ZhangY, XiaL, LiuD. Opt. Commun., 2012, 285: 2466

[17]

ShuaiB, XiaL, ZhangY, LiuD. Opt. Express, 2012, 20: 5974

[18]

ElkinNN, NapartovichA P, TroshchievaV N, VysotskyD V. J. Lightwave Technol., 2007, 25: 3072

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/