Efficiency enhancement of polymer solar cells by post-additional annealing treatment

Xuan Yu , Xiao-ming Yu , Zi-yang Hu , Jian-jun Zhang , Gengshen Zhao , Ying Zhao

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (4) : 274 -277.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (4) : 274 -277. DOI: 10.1007/s11801-013-3044-0
Article

Efficiency enhancement of polymer solar cells by post-additional annealing treatment

Author information +
History +
PDF

Abstract

We adopt the post-additional thermal annealing (PATA) process to optimize the performance of the polymer solar cells (PSCs) with an active layer composed of a blend of regioregular poly (3-hexythiophene) (RR-P3HT) and fullerenes. It is found that compared with general annealing process, the crystallinity of RR-P3HT by PATA is enhanced, and the absorption peak is raised obviously at ∼500 nm after PATA. With the optimized annealing conditions, the device shows an enhancement of 31% in short circuit current density, 5% in open circuit voltage (Voc), and 11% in the power conversion efficiency (PCE) compared with that of the general annealing device.

Keywords

Active Layer / Thermal Annealing / Power Conversion Efficiency / Polymer Solar Cell / Short Circuit Current Density

Cite this article

Download citation ▾
Xuan Yu, Xiao-ming Yu, Zi-yang Hu, Jian-jun Zhang, Gengshen Zhao, Ying Zhao. Efficiency enhancement of polymer solar cells by post-additional annealing treatment. Optoelectronics Letters, 2013, 9(4): 274-277 DOI:10.1007/s11801-013-3044-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HeZ, ZhongC, HuangX, WongW-Y, WuH, ChenL, SuS, CaoY. Adv. Mater., 2011, 23: 4636

[2]

ZhouH, YangL, YouW. Macromolecules, 2012, 45: 607

[3]

YuG, GaoJ, HummelenJ C, WudlF, HeegerA J. Science, 1995, 270: 1789

[4]

LiX, ChoyW C H, HuoL, XieF, ShaW E I, DingB, GuoX, LiY, HouJ, YouJ, YangY. Adv. Mater., 2012, 24: 3046

[5]

LiW M, GuoJ C, ZhouB. Journal of Optoelectronics ·Laser, 2012, 23: 1274

[6]

YanQ Q, QinW J, WangC, SongP F, DingG J, YangL Y, YinS G. Optoelectronics Letters, 2011, 7: 410

[7]

LiG, ShrotriyaV, HangJ S, YaoY, MoriartyT, EmeryK, YangY. Nat. Mater., 2005, 4: 864

[8]

PadingerF, RittbergerR S, SariciftciN S. Adv. Funct. Mater., 2003, 13: 1

[9]

MaW L, YangC Y, GongX, LeeK, HeegerA J. Adv. Funct. Mater., 2005, 15: 1617

[10]

JoJ, KimS S, NaS I, YuB K, KimD Y. Adv. Funct. Mater., 2009, 19: 866

[11]

ParkJ H, KimJ S, LeeJ H, LeeW H, ChoK. J. Phys. Chem. C, 2009, 113: 17579

[12]

LiG, YaoY, YangH, ShrotriyaV, YangG, YangY. Adv. Funct. Mater., 2007, 17: 1636

[13]

LiW J. Journal of Optoelectronics·Laser, 2010, 21: 1602

[14]

ZhangY P. Journal of Optoelectronics·Laser, 2009, 20: 1327

[15]

KimJ Y, KimS H, LeeH H, LeeK, MaW, GongX, HeegerA J. Adv. Mater., 2006, 18: 572

[16]

RiedelM, DyakonovV. Phys. Status Solidi A, 2004, 201: 1332

[17]

KimY, ChoulisS A, NelsonJ, BradleyD D C, CookS, DurrantJ R. Appl. Phys. Lett., 2005, 86: 063502

[18]

HuZ, ZhangJ, ZhuY. Appl. Phys. Lett., 2013, 102: 043307

[19]

DennlerG, ScharberM C, BrabecC J. Adv. Mater., 2009, 21: 1323

[20]

LögdlundM, BrédasJ L. J. Chem. Phys., 1994, 101: 4357

[21]

HuZ, ZhangJ, ZhaoY. Org. Electron., 2012, 13: 142

[22]

SwinnenA, HaeldermansI, Van de VenM, D’HaenJ, VanhoylandG, AresuS, D’OlieslaegerM, MancaJ. Adv. Funct. Mater., 2006, 16: 760

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/