A metamaterial terahertz modulator based on complementary planar double-split-ring resonator

Chang-hui Wang , Deng-feng Kuang , Sheng-jiang Chang , Lie Lin

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (4) : 266 -269.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (4) : 266 -269. DOI: 10.1007/s11801-013-3041-3
Article

A metamaterial terahertz modulator based on complementary planar double-split-ring resonator

Author information +
History +
PDF

Abstract

A metamaterial based on complementary planar double-split-ring resonator (DSRR) structure is presented and demonstrated, which can optically tune the transmission of the terahertz (THz) wave. Unlike the traditional DSRR metamaterials, the DSRR discussed in this paper consists of two split rings connected by two bridges. Numerical simulations with the finite-difference time-domain (FDTD) method reveal that the transmission spectra of the original and the complementary metamaterials are both in good agreement with Babinet’s principle. Then by increasing the carrier density of the intrinsic GaAs substrate, the magnetic response of the complementary special DSRR metamaterial can be weakened or even turned off. This metamaterial structure is promised to be a narrow-band THz modulator with response time of several nanoseconds.

Keywords

GaAs / Carrier Density / Magnetic Response / Split Ring / Metamaterial Structure

Cite this article

Download citation ▾
Chang-hui Wang, Deng-feng Kuang, Sheng-jiang Chang, Lie Lin. A metamaterial terahertz modulator based on complementary planar double-split-ring resonator. Optoelectronics Letters, 2013, 9(4): 266-269 DOI:10.1007/s11801-013-3041-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FergusonB, ZhangX C. Nat. Mater., 2002, 1: 26

[2]

LiuC, ChangS J. Optoelectron. Lett., 2012, 8: 264

[3]

PendryJ B, HoldenA J, StewartW J, YoungsI. Phys. Rev. Lett., 1996, 76: 4773

[4]

TaoH, LandyN I, BinghamC M, ZhangX, AverittR D, PadillaW J. Opt. Express, 2008, 16: 7181

[5]

LiJ, TianZ, ChenY, CaoW, ZengZ. Appl. Opt., 2012, 51: 3258

[6]

ChenH T, PadillaW J, CichM J, AzadA K, AverittR D, TaylorA J. Nat. Photon., 2009, 3: 148

[7]

YenT J, PadillaW J, FangN, VierD C, SmithD R, PendryJ B, BasovD N, ZhangX. Science, 2004, 303: 1494

[8]

HuggardP G, CluffJ A, MooreG P, ShawC J, AndrewsS R, KeidingS R, LinfieldE H, RitchieD A. J. Appl. Phys., 2000, 87: 2382

[9]

BitzerA, OrtnerA, MerboldH, HannesF, ThomasW, WaltherM. Opt. Express, 2011, 19: 2537

[10]

JinB, ZhangC, EngelbrechtS, PimenovA, WuJ, XuQ, CaoC, ChenJ, XuW, KangL, WuP. Opt. Express, 2010, 18: 17504

[11]

LinY-S, QianY, MaF, LiuZ, KropelnickiP, LeeC. Appl. Phys. Lett., 2013, 102: 111908

[12]

PadillaW J, TaylorA J, HighstreteC, LeeM, AverittR D. Phys. Rev. Lett., 2006, 96: 107401

[13]

ChenH T, PadillaW J, ZideJ M O, BankS R, GossardA C, TaylorA J, AverittR D. Opt. Lett., 2007, 32: 1620

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/