Photoluminescence properties and chemical bond variations of SiNx:H films with silicon quantum dots

Xu-xu Xiong, Li-hua Jiang, Xiang-bin Zeng, Xiao Zhang

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 375-377.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 375-377. DOI: 10.1007/s11801-013-3038-y
Article

Photoluminescence properties and chemical bond variations of SiNx:H films with silicon quantum dots

Author information +
History +

Abstract

Hydrogenated silicon nitride (SiNx:H) thin films are deposited on p-type silicon substrates by plasma enhanced chemical vapor deposition (PECVD) using a gas mixture of ammonia and silane at 230 °C. The chemical compositions and optical properties of these films, which are dealt at different annealing temperatures, are investigated by Fourier transform infrared (FTIR) absorption spectroscopy and photoluminescence (PL) spectroscopy, respectively. It is shown that the FTIR presents an asymmetric Si-N stretching mode, whose magnitude is enhanced and position is shifted towards higher frequencies gradually with the increase of the annealing temperature. Meanwhile, it is found that the PL peak shows red shift with its magnitude decreasing, and disappears at 1100 °C. The FTIR and PL spectra characteristics suggest that the light emission is attributed to the quantum confinement effect of the carriers inside silicon quantum dots embedded in SiNx: H thin films.

Keywords

Silicon Nitride / Plasma Enhance Chemical Vapor Deposition / Quantum Confinement Effect / Valence Band Tail / Nonradiative Defect

Cite this article

Download citation ▾
Xu-xu Xiong, Li-hua Jiang, Xiang-bin Zeng, Xiao Zhang. Photoluminescence properties and chemical bond variations of SiNx:H films with silicon quantum dots. Optoelectronics Letters, 2013, 9(5): 375‒377 https://doi.org/10.1007/s11801-013-3038-y

References

[1]
PengX-f. Journal of Optoelectronics·Laser, 2013, 24: 39
[2]
Dal NegroL, YiJ H, KimerlingL C, HamelS, WilliamsonA, GalliG. Appl. Phys. Lett., 2006, 88: 183103
CrossRef Google scholar
[3]
W-h, ZhangJ, ShaoL-x. Journal of Optoelectronics·Laser, 2012, 23: 2277
[4]
De la TorreJ, BremondG, LemitiM, GuillotG, MurP, BuffetN. Thin Solid Films, 2006, 511: 163
CrossRef Google scholar
[5]
HaoH L, WuL K, ShenW Z. Appl. Phys. Lett., 2008, 92: 121922
CrossRef Google scholar
[6]
MolinariM, RinnertH, VergnatM. J. Appl. Phys., 2007, 101: 123532
CrossRef Google scholar
[7]
DelachatF, CarradaM, FerblantierG, GrobJ J, SlaouiA. Nanotechnology, 2009, 20: 415608
CrossRef Google scholar
[8]
KimB H, ChoC H, KimT W, ParkN M, SungG Y, ParkS J. Appl. Phys. Lett., 2005, 86: 091908
CrossRef Google scholar
[9]
WangY Q, WangY G, CaoL, CaoZ X. Appl. Phys. Lett., 2003, 83: 3474
CrossRef Google scholar
[10]
PiX D, ChenX B, MaY S, YangD R. Nanoscale, 2011, 3: 4584
CrossRef Google scholar
[11]
BéchirR, AbelS, TetyanaN, MustaphaL, GeorgesB. J. Vac. Sci. Technol. B, 2009, 27: 2238
CrossRef Google scholar
[12]
HaoH L, WuL K, ShenW Z, DekkersH F W. Appl. Phys. Lett., 2007, 91: 201922
CrossRef Google scholar
[13]
EspositoE M, MercaldoL V, VeneriP D, LancellottiL, PrivatoC. Energy Procedia., 2010, 2: 159
CrossRef Google scholar
[14]
MercaldoL V, VeneriP D, EspositoE, MasseraE, UsatiiI, PrivatoC. Materials Science and Engineering B, 2009, 159: 74
CrossRef Google scholar
[15]
PanchalA K, SolankiC S. Journal of Crystal Growth, 2009, 311: 2659
CrossRef Google scholar
[16]
WangM H, LiD S, YuanZ Z, YangD R, QueD L. Appl. Phys. Lett., 2007, 90: 131903
CrossRef Google scholar
[17]
MaK, FengJ Y, ZhangZ J. Nanotechnology, 2006, 17: 4650
CrossRef Google scholar
[18]
RezguiB, SibaiA, NychyporukT, LemitiM, BremondG, MaestreD, PalaisO. Appl. Phys. Lett., 2010, 96: 183105
CrossRef Google scholar

This work has been supported by the Scientific Research Foundation of China Three Gorges University (No.0620120130).

Accesses

Citations

Detail

Sections
Recommended

/