Photoluminescence properties and chemical bond variations of SiNx:H films with silicon quantum dots

Xu-xu Xiong , Li-hua Jiang , Xiang-bin Zeng , Xiao Zhang

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 375 -377.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (5) : 375 -377. DOI: 10.1007/s11801-013-3038-y
Article

Photoluminescence properties and chemical bond variations of SiNx:H films with silicon quantum dots

Author information +
History +
PDF

Abstract

Hydrogenated silicon nitride (SiNx:H) thin films are deposited on p-type silicon substrates by plasma enhanced chemical vapor deposition (PECVD) using a gas mixture of ammonia and silane at 230 °C. The chemical compositions and optical properties of these films, which are dealt at different annealing temperatures, are investigated by Fourier transform infrared (FTIR) absorption spectroscopy and photoluminescence (PL) spectroscopy, respectively. It is shown that the FTIR presents an asymmetric Si-N stretching mode, whose magnitude is enhanced and position is shifted towards higher frequencies gradually with the increase of the annealing temperature. Meanwhile, it is found that the PL peak shows red shift with its magnitude decreasing, and disappears at 1100 °C. The FTIR and PL spectra characteristics suggest that the light emission is attributed to the quantum confinement effect of the carriers inside silicon quantum dots embedded in SiNx: H thin films.

Keywords

Silicon Nitride / Plasma Enhance Chemical Vapor Deposition / Quantum Confinement Effect / Valence Band Tail / Nonradiative Defect

Cite this article

Download citation ▾
Xu-xu Xiong, Li-hua Jiang, Xiang-bin Zeng, Xiao Zhang. Photoluminescence properties and chemical bond variations of SiNx:H films with silicon quantum dots. Optoelectronics Letters, 2013, 9(5): 375-377 DOI:10.1007/s11801-013-3038-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PengX-f. Journal of Optoelectronics·Laser, 2013, 24: 39

[2]

Dal NegroL, YiJ H, KimerlingL C, HamelS, WilliamsonA, GalliG. Appl. Phys. Lett., 2006, 88: 183103

[3]

W-h, ZhangJ, ShaoL-x. Journal of Optoelectronics·Laser, 2012, 23: 2277

[4]

De la TorreJ, BremondG, LemitiM, GuillotG, MurP, BuffetN. Thin Solid Films, 2006, 511: 163

[5]

HaoH L, WuL K, ShenW Z. Appl. Phys. Lett., 2008, 92: 121922

[6]

MolinariM, RinnertH, VergnatM. J. Appl. Phys., 2007, 101: 123532

[7]

DelachatF, CarradaM, FerblantierG, GrobJ J, SlaouiA. Nanotechnology, 2009, 20: 415608

[8]

KimB H, ChoC H, KimT W, ParkN M, SungG Y, ParkS J. Appl. Phys. Lett., 2005, 86: 091908

[9]

WangY Q, WangY G, CaoL, CaoZ X. Appl. Phys. Lett., 2003, 83: 3474

[10]

PiX D, ChenX B, MaY S, YangD R. Nanoscale, 2011, 3: 4584

[11]

BéchirR, AbelS, TetyanaN, MustaphaL, GeorgesB. J. Vac. Sci. Technol. B, 2009, 27: 2238

[12]

HaoH L, WuL K, ShenW Z, DekkersH F W. Appl. Phys. Lett., 2007, 91: 201922

[13]

EspositoE M, MercaldoL V, VeneriP D, LancellottiL, PrivatoC. Energy Procedia., 2010, 2: 159

[14]

MercaldoL V, VeneriP D, EspositoE, MasseraE, UsatiiI, PrivatoC. Materials Science and Engineering B, 2009, 159: 74

[15]

PanchalA K, SolankiC S. Journal of Crystal Growth, 2009, 311: 2659

[16]

WangM H, LiD S, YuanZ Z, YangD R, QueD L. Appl. Phys. Lett., 2007, 90: 131903

[17]

MaK, FengJ Y, ZhangZ J. Nanotechnology, 2006, 17: 4650

[18]

RezguiB, SibaiA, NychyporukT, LemitiM, BremondG, MaestreD, PalaisO. Appl. Phys. Lett., 2010, 96: 183105

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/