Spectral properties and energy transfer in Er3+/Yb3+ co-doped LiYF4 crystal

Pei-yuan Wang , Hai-ping Xia , Jiang-tao Peng , Hao-yang Hu , Lei Tang , Yue-pin Zhang , Bao-jiu Chen , Hao-chuan Jiang

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (4) : 285 -288.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (4) : 285 -288. DOI: 10.1007/s11801-013-3034-2
Article

Spectral properties and energy transfer in Er3+/Yb3+ co-doped LiYF4 crystal

Author information +
History +
PDF

Abstract

Laser crystals of LiYF4 (LYF) singly doped with Er3+ in 2.0% and co-doped with Er3+/Yb3+ in about 2.0%/1.0% molar fraction in the raw composition are grown by a vertical Bridgman method. X-ray diffraction (XRD), absorption spectra, fluorescence spectra and decay curves are measured to investigate the structural and luminescent properties of the crystals. Compared with the Er3+ singly doped sample, obviously enhanced emission at 1.5 μm wavelength and green and red up-conversion emissions from Er3+/Yb3+ co-doped crystal are observed under the excitation of 980 nm laser diode. Meanwhile, the emission at 2.7 μm wavelength from Er3+ singly doped crystal is reduced. The fluorescence decay time ranging from 18.60 ms for Er3+ singly doped crystal to 23.01 ms for Er3+/Yb3+ co-doped crystal depends on the ionic concentration. The luminescent mechanisms for the Er3+/Yb3+ co-doped crystals are analyzed, and the possible energy transfer processes from Yb3+ to Er3+ are proposed.

Keywords

Energy Transfer Process / Effective Segregation / Vertical Bridgman Method / Effective Segregation Coefficient / Effective Line Width

Cite this article

Download citation ▾
Pei-yuan Wang, Hai-ping Xia, Jiang-tao Peng, Hao-yang Hu, Lei Tang, Yue-pin Zhang, Bao-jiu Chen, Hao-chuan Jiang. Spectral properties and energy transfer in Er3+/Yb3+ co-doped LiYF4 crystal. Optoelectronics Letters, 2013, 9(4): 285-288 DOI:10.1007/s11801-013-3034-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChenH B, FanS J, XiaH P, XuJ Y. J. Mater. Sci. Lett., 2002, 21: 457

[2]

De SousaD F, ZonettiL F C, BellM J V, LebullengerR, HernandesA C. J. Appl. Phys., 1999, 85: 2502

[3]

GaoS X, LiX Q, ZhangS M. Optik, 2010, 121: 2110

[4]

LiS F, ZhangM, PengY, ZhangQ Y, ZhaoM S. J. Rare Earths, 2010, 28: 237

[5]

ZhongH Y, CaoW H. J. Funct. Mater., 2009, 40: 896

[6]

NamujilatuY B, RuanY F, YuanJ. Journal Chin. Ceram. Soc., 2001, 29: 585

[7]

LanC W. J. Cryst. Growth, 2001, 229: 595

[8]

Anandha BaduG, SubramaniyanrajaR, KarunagaranN, Perumal RamasamyR, RamasamyP, GanesamoorthyS, GuptaP K. J. Cryst. Growth, 2012, 338: 42

[9]

CampbellT A, KosterJ N. J. Cryst. Growth, 1995, 147: 408

[10]

YuX F, ChenH B, WangS J, ZhouY F, WuA H, DaiX X. J. Inorg. Mater., 2011, 26: 924

[11]

HuangJ H, ChenY J, GongX H, LinY F, LuoZ D, HuangY D. Laser Phys., 2012, 22: 146

[12]

HuangJ H, ChenY J, GongX H, LinY F, LuoZ D, HuangY D. Appl. Phys. B, 2009, 97: 431

[13]

PhilippsJ F, TopferT, Ebendorff-HeidepriemH, EhrtD, SauerbreyR. Appl. Phys. B, 2001, 72: 399

[14]

SinghV, RaiV K, HearseM. J. Appl. Phys., 2012, 112: 063105

[15]

MurakamiS, HerrenM, RauD, MoritaM. Chim. Acta, 2000, 300: 1014

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/