Directly assembled quantum dots on one dimension ordered TiO2 nanostructure in aqueous solution for improving photocatalytic activity

Jin-zhao Huang , Lei Kuang , Song Liu , Yong-dan Zhao , Tao Jiang , Shi-you Liu , Ming-zhi Wei

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (4) : 241 -245.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (4) : 241 -245. DOI: 10.1007/s11801-013-3025-3
Article

Directly assembled quantum dots on one dimension ordered TiO2 nanostructure in aqueous solution for improving photocatalytic activity

Author information +
History +
PDF

Abstract

One dimension (1D) ordered titanium dioxide (TiO2) nanostructured photocatalysts sensitized by quantum dots (QDs) are fabricated. Their morphologies, crystal structures and photocatalytic properties are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectroscopy, respectively. Compared with the original TiO2 nanostructure, the nanostructured TiO2 sensitized by QDs exhibits a good photocatalytic activity for the degradation of methyl orange (MO). The QDs with core-shell structure can reduce the photocatalytic ability due to the higher potential barrier of carrier transport in ZnS shell layer. The results indicate that the proposed photocatalyst shows promising potential for the application in organic dye degradation.

Keywords

Photocatalytic Activity / Methyl Orange / Photocatalytic Property / High Potential Barrier / Optical Absorption Cross Section

Cite this article

Download citation ▾
Jin-zhao Huang, Lei Kuang, Song Liu, Yong-dan Zhao, Tao Jiang, Shi-you Liu, Ming-zhi Wei. Directly assembled quantum dots on one dimension ordered TiO2 nanostructure in aqueous solution for improving photocatalytic activity. Optoelectronics Letters, 2013, 9(4): 241-245 DOI:10.1007/s11801-013-3025-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TangY X, WeeP X, LaiY K, WangX P, GongD G, KanhereP D, LimT -T, DongZ L, ChenZ. J. Phys. Chem. C, 2012, 116: 2772

[2]

LiuB S, NakataK, LiuS H, SakaiM, OchiaiT, MurakamiT, TakagiK, FujishimaA. J. Phys. Chem. C, 2012, 116: 7471

[3]

ChowdhuryP, MoreiraJ, GomaaH, AjayK R. Ind. Eng. Chem. Res., 2012, 51: 4523

[4]

ZhangF J, XuX W, TangW H, ZhangJ, ZhuoZ L, WangJ, WangJ, XuZ, WangY S. Sol. Energ. Mat. Sol. C., 2011, 95: 1785

[5]

ChenZ G, LiuP Y, HouL T, MaiW J, WuB. Optoelectronics Letters, 2012, 8: 93

[6]

NiuP, HaoJ C. Langmuir, 2011, 27: 13590

[7]

XiaoF X. J. Mater. Chem., 2012, 22: 7819

[8]

XuX J, TangC C, ZengH B, ZhaiT Y, ZhangS Q, ZhaoH J, BandoY, GolbergD. ACS Appl. Mater. Interfaces, 2011, 3: 1352

[9]

LiaoJ J, LinS W, ZhangL, PanN Q, CaoX K, LiJ B. ACS Appl. Mater. Interfaces, 2012, 4: 171

[10]

LiW j, LiD Z, ChenZ X, HuangH J, SunM, HeY H, FuX Z. J. Phys. Chem. C, 2008, 112: 14943

[11]

ShiehD-Lin, LinY -S, YehJ -H, ChenS -C, LinB -C, LinJ -L. Chem. Commun., 2012, 48: 2528

[12]

MukherjeeB, SmithY R, SubramanianV. J. Phys. Chem. C, 2012, 116: 15175

[13]

ShenF Y, QueW X, LiaoY L, YinX T. Ind. Eng. Chem. Res., 2011, 50: 9131

[14]

RatanatawanateC, BuiA, VuK, BalkusJr K J. J. Phys. Chem. C, 2011, 115: 6175

[15]

ChoS, JangJ -W, KimJ W, LeeJ S, ChoiW, LeeK -H. Langmuir, 2011, 27: 10243

[16]

DalaiM R, YanZ W, ShiL. Optoelectronics Letters, 2012, 8: 224

[17]

LiuB, AydilE S. J. Am. Chem. Soc., 2009, 131: 3985

[18]

SunX W, HuangJ Z, WangJ X, XuZ. Nano Lett., 2008, 8: 1219

[19]

XuC K, GaoD. J. Phys. Chem. C, 2012, 116: 7236

[20]

ChenJ, SongJ L, SunX W, DengW Q, JiangC Y, LeiW. Appl. Phys. Lett., 2009, 94: 153115

[21]

KwakJ, BaeW K, LeeD, ParkI, LimJ, ParkM, ChoH, WooH, YoonD Y, CharK, LeeS, LeeC. Nano Lett., 2012, 12: 2362

[22]

KudoA, MisekiY. Chem. Soc. Rev., 2009, 38: 253

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/