A label-free single photonic quantum well biosensor based on porous silicon for DNA detection

Rong-xia Liu , Liang-liang Chen , Hong-yan Zhang , Zhen-hong Jia

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (3) : 225 -228.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (3) : 225 -228. DOI: 10.1007/s11801-013-3020-8
Article

A label-free single photonic quantum well biosensor based on porous silicon for DNA detection

Author information +
History +
PDF

Abstract

The single photonic quantum well (PQW) structures are successfully fabricated on p-type silicon wafer by electrochemical etching process, and are used for DNA detection firstly. The red shift of resonance peak is caused by the changing refractive index of PSi layer, which results from coupling of organic molecules into pores. When the porous silicon (PSi) based single PQW biosensors are immersed in complementary deoxyribonucleic acid (DNA) with different concentrations ranging from 0.625 μM to 10.000 μM, a good linear relationship is observed between the red shift of resonance peak and the complementary DNA concentration. Experimental results show that the detection sensitivity of PSi-based single PQW biosensors is 3.04 nm/μM with a detection limit of 32 nM for 16-base pair DNA oligonucleotides.

Keywords

Photonic Crystal / Porous Silicon / Resonance Peak / Complementary Deoxyribonucleic Acid / Urumqi 830046

Cite this article

Download citation ▾
Rong-xia Liu, Liang-liang Chen, Hong-yan Zhang, Zhen-hong Jia. A label-free single photonic quantum well biosensor based on porous silicon for DNA detection. Optoelectronics Letters, 2013, 9(3): 225-228 DOI:10.1007/s11801-013-3020-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CanhamL G. Appl. Phys. Lett., 1990, 57: 1046

[2]

Di FranciaG, TurchiniS, ProsperiT, MartelliF, AmatoG, De SantisM. J. Appl. Phys., 1994, 76: 3787

[3]

CullisA G, CanhamL T, CalcottP D J. J. Appl. Phys., 1997, 82: 909

[4]

ZhangH, LvX, LvC, JiaZ. Optical Engineering, 2012, 51: 099003

[5]

MathewF P, AlociljaE C. Biosens. Bioelectron, 2005, 20: 1656

[6]

NaddafM, Al-MaririA. Sensors and Actuators B: Chemical, 2011, 160: 835

[7]

RossiA M, WangL, ReipaV, MurphyT E. Biosens. Bioelectron, 2007, 23: 741

[8]

RyckmanJ D, LiscidiniM, SipeJ E, WeissS M. Appl. Phys. Lett., 2010, 96: 171103

[9]

DeLouiseL A, KouP M, MillerB L. Anal. Chem., 2005, 77: 3222

[10]

ZhangH-y, X-y, JiaZ-h, LiJ-w, ZhangF-c. Journal of Opoelectronics ·Laser, 2012, 23: 0081

[11]

KimH-J, KimY-Y, LeeK-W. Current Applied Physics, 2010, 10: 181

[12]

LiR, TuY-x, LiC-c, X-y, JiaZ-h, ZhangF-c. Journal of Optoelectronics ·Laser, 2010, 21: 1111

[13]

GoJ, NairP R, AlamM A. J. Appl. Phys., 2012, 112: 034516

[14]

Varaljay-SpenceV A, ScardellettiM C. J. Laser Appl., 2007, 19: 207

[15]

ZhangH, JiaZ, LvX, ZhouJ, ChenL, LiuR, MaJ. Biosensors and Bioelectronics, 2013, 44: 89

[16]

KimH-J, KimY-Y, LeeK-W, ParkS-H. Sensors and Actuators B: Chemical, 2011, 2: 673

[17]

LvX, MoJ, JiangT, ZhongF, JiaZ, LiJ, ZhangF. Applied Surface Science, 2011, 257: 1906

[18]

RongG, RyckmanJ D, MernaughR L, WeissS M. Appl. Phys. Lett., 2008, 93: 161109

[19]

LinS Y, ArjavalingamG. J. Opt. Soc. Am. B, 1994, 11: 2124

[20]

JiangY, NiuC, LinD L. Phys. Rev. B, 1999, 59: 9981

[21]

QiaoF, ZhangC, WanJ, ZiJ. Appl. Phys. Lett., 2000, 77: 3698

[22]

DeLouiseL A, MillerB L. Proc. SPIE, 2004, 5357: 111

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/