High-performance optical wavelength-selective switches based on double ring resonators

Kambiz Abedi

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (3) : 185-188.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (3) : 185-188. DOI: 10.1007/s11801-013-3019-1
Article

High-performance optical wavelength-selective switches based on double ring resonators

Author information +
History +

Abstract

In order to improve the performance of optical wavelength-selective switches based on double micro-ring resonators, an asymmetric intra-step-barrier coupled double strained quantum wells (AICD-SQWs) structure is utilized as the active light guiding medium. The AICD-SQW active layer has advantages, such as large change range in absorption coefficient, high extinction ratio, large Stark shift and very low insertion. For predicting the switching characteristics of double ring resonators structure, the absorption coefficient and real refractive index changes of the AICD-SQW active layer are calculated for different applied electric fields for TE input light polarization. Simulation results show that switching characteristics strongly depend on changes in absorption coefficient and real refractive index of active layer. In addition, isolations of 37.44 dB and 26.84 dB are realized between drop and through ports, when drop and through ports are ON and OFF, respectively, and vice versa.

Keywords

Applied Electric Field / Resonant Wavelength / Switching Characteristic / High Extinction Ratio / Drop Port

Cite this article

Download citation ▾
Kambiz Abedi. High-performance optical wavelength-selective switches based on double ring resonators. Optoelectronics Letters, 2013, 9(3): 185‒188 https://doi.org/10.1007/s11801-013-3019-1

References

[1]
LittleB E, ChuS T, HaussH A, ForesiJ, LaineJ P. IEEE J. Lightw. Technol., 1997, 15: 998
CrossRef Google scholar
[2]
BarwiczT, PopovicM A, RakichP T, WattsM R, HausH A, IppenE P, SmithH I. Opt. Express, 2004, 12: 1437
CrossRef Google scholar
[3]
TakahashiK, KanamoriY, KokubunY, HaneK. Opt. Express, 2008, 16: 14421
CrossRef Google scholar
[4]
RavindranS, AlamehK, LeeY T. Opt. Quant. Electron., 2009, 41: 635
CrossRef Google scholar
[5]
GroverR, IbrahimT A, KanakarajuS, LucasL, CalhounL C, HoP H. IEEE Photon. Technol. Lett., 2004, 16: 467
CrossRef Google scholar
[6]
AbediK, AhmadiV, DarabiE, Moravvej-FarshiM K, SheikhiM H. Solid State Electron., 2008, 53: 312
CrossRef Google scholar
[7]
AbediK. Eur. Phys. J. Appl. Phys., 2011, 56: 10403
CrossRef Google scholar
[8]
AbediK, AhmadiV, Moravvej-FarshiM K. Opt. Quant. Electron., 2009, 41: 719
CrossRef Google scholar
[9]
AbediK. Opt. Quant. Electron., 2012, 44: 55
CrossRef Google scholar
[10]
AbediK. J. Semicond., 2012, 33: 064001
CrossRef Google scholar
[11]
AbediK. Optoelectron. Lett., 2012, 8: 176
CrossRef Google scholar
[12]
AbediK. Int. J. Eng. Sci. Technol., 2011, 3: 6684
[13]
AbediK. Int. J. Adv. Eng. Technol., 2011, 1: 388
[14]
AbediK. Canad. J. Electric. Electron. Eng., 2011, 2: 209
[15]
AbediK, AfrouzH. Acta Physica Polonica A, 2013, 123: 415
CrossRef Google scholar
[16]
AbediK. International Review of Modelling and Simulations (IREMOS), 2011, 4: 1982

Accesses

Citations

Detail

Sections
Recommended

/