High-performance optical wavelength-selective switches based on double ring resonators

Kambiz Abedi

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (3) : 185 -188.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (3) : 185 -188. DOI: 10.1007/s11801-013-3019-1
Article

High-performance optical wavelength-selective switches based on double ring resonators

Author information +
History +
PDF

Abstract

In order to improve the performance of optical wavelength-selective switches based on double micro-ring resonators, an asymmetric intra-step-barrier coupled double strained quantum wells (AICD-SQWs) structure is utilized as the active light guiding medium. The AICD-SQW active layer has advantages, such as large change range in absorption coefficient, high extinction ratio, large Stark shift and very low insertion. For predicting the switching characteristics of double ring resonators structure, the absorption coefficient and real refractive index changes of the AICD-SQW active layer are calculated for different applied electric fields for TE input light polarization. Simulation results show that switching characteristics strongly depend on changes in absorption coefficient and real refractive index of active layer. In addition, isolations of 37.44 dB and 26.84 dB are realized between drop and through ports, when drop and through ports are ON and OFF, respectively, and vice versa.

Keywords

Applied Electric Field / Resonant Wavelength / Switching Characteristic / High Extinction Ratio / Drop Port

Cite this article

Download citation ▾
Kambiz Abedi. High-performance optical wavelength-selective switches based on double ring resonators. Optoelectronics Letters, 2013, 9(3): 185-188 DOI:10.1007/s11801-013-3019-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LittleB E, ChuS T, HaussH A, ForesiJ, LaineJ P. IEEE J. Lightw. Technol., 1997, 15: 998

[2]

BarwiczT, PopovicM A, RakichP T, WattsM R, HausH A, IppenE P, SmithH I. Opt. Express, 2004, 12: 1437

[3]

TakahashiK, KanamoriY, KokubunY, HaneK. Opt. Express, 2008, 16: 14421

[4]

RavindranS, AlamehK, LeeY T. Opt. Quant. Electron., 2009, 41: 635

[5]

GroverR, IbrahimT A, KanakarajuS, LucasL, CalhounL C, HoP H. IEEE Photon. Technol. Lett., 2004, 16: 467

[6]

AbediK, AhmadiV, DarabiE, Moravvej-FarshiM K, SheikhiM H. Solid State Electron., 2008, 53: 312

[7]

AbediK. Eur. Phys. J. Appl. Phys., 2011, 56: 10403

[8]

AbediK, AhmadiV, Moravvej-FarshiM K. Opt. Quant. Electron., 2009, 41: 719

[9]

AbediK. Opt. Quant. Electron., 2012, 44: 55

[10]

AbediK. J. Semicond., 2012, 33: 064001

[11]

AbediK. Optoelectron. Lett., 2012, 8: 176

[12]

AbediK. Int. J. Eng. Sci. Technol., 2011, 3: 6684

[13]

AbediK. Int. J. Adv. Eng. Technol., 2011, 1: 388

[14]

AbediK. Canad. J. Electric. Electron. Eng., 2011, 2: 209

[15]

AbediK, AfrouzH. Acta Physica Polonica A, 2013, 123: 415

[16]

AbediK. International Review of Modelling and Simulations (IREMOS), 2011, 4: 1982

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/