Buffer structure optimization of the photoacoustic cell for trace gas detection

Yang Cai , Norhana Arsad , Min Li , Yao Wang

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (3) : 233 -237.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (3) : 233 -237. DOI: 10.1007/s11801-013-3017-3
Article

Buffer structure optimization of the photoacoustic cell for trace gas detection

Author information +
History +
PDF

Abstract

The equivalent four-pole network model is used to simulate one-dimension longitudinal acoustic resonator with different buffer diameters and lengths, aiming to reach a theoretic model which is able to estimate the optimal buffer geometry. In experiments, the buffer volumes are decreased gradually by filling a set of aluminum rings with different inner diameters and lengths into the buffers to get the desired dimensions. The experimental results show that the average deviation of 1.1% is obtained between the experimental results and the theoretical simulation at the buffer length of 30 mm. Experiments show that the minimum background signal occurs when the buffer length is equal to a quarter of the acoustic wavelength (λ/4). The amplitude of the photoacoustic signal is barely influenced when dbuf>3dres. Considering that oversize of photoacoustic cell needs more measuring gas and more material, the buffer diameter can be deduced to dbuf≈3dres. Therefore, smaller photoacoustic cell is desirable.

Keywords

Resonance Frequency / Photoacoustic Signal / Buffer Volume / Photoacoustic Cell / Buffer Length

Cite this article

Download citation ▾
Yang Cai, Norhana Arsad, Min Li, Yao Wang. Buffer structure optimization of the photoacoustic cell for trace gas detection. Optoelectronics Letters, 2013, 9(3): 233-237 DOI:10.1007/s11801-013-3017-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TeodoroC G, SchrammD U S, SthelM S, LimaG R, RochaM V, TavaresJ R, VargasH. Journal of Physics: Conference Series, 2010, 214: 012040

[2]

LauferJ, ElwellC, DelpyD, BeardP. Physics in Medicine and Biology, 2005, 50: 4409

[3]

ChenW, LiuB, ZhouH, WangY, WangC. European Transactions on Electrical Power, 2012, 22: 226

[4]

ChenX, SuiQ M, MiaoF, JiaL, WangJ. Journal of Optoelectronics·Laser, 2011, 22: 1679

[5]

YeW L, YuX, ZhengC T, ZhaoC X, CongM L, SongZ W, WangY D. Optoelectronics Letters, 2011, 7: 217

[6]

TavakoliM, TavakoliA, TaheriM, SaghafifarH. Optics and Laser Technology, 2010, 42: 828

[7]

KalkmanJ, Van KesterenW H. Applied Physics B: Lasers and Optics, 2008, 90: 197

[8]

AamodtL C, MurphyJ C, ParkerJ G. Journal of Applied Physics, 1977, 48: 927

[9]

CristescuS, DumitrasD C, DutuD C A. Proceedings of SPIE -The International Society for Optical Engineering, 2000, 4068: 261

[10]

BijnenF G C, ReussJ, HarrenF J M. Review of Scientific Instruments, 1996, 67: 2914

[11]

GondalM A, KhalilA A I, Al-SulimanN. Applied Optics, 2012, 51: 23

[12]

WolffM, KostB, BaumannB. International Journal of Thermophysics, 2012, 33: 1953

[13]

BenadeA H. Journal of the Acoustical Society of America, 1968, 44: 616

[14]

BerneggerS, SigristM W. Infrared Physics, 1990, 30: 375

[15]

BozokiZ, MiklosA, HessP. Review of Scientific Instruments, 2001, 72: 1937

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/