Luminescent property and energy transfer from Ce3+ to Tb3+ in YAl3(BO3)4

Xiu-hong Dai , Hong-lian Li , Li-bin Pang , Shao-jie Gao

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (3) : 194 -197.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (3) : 194 -197. DOI: 10.1007/s11801-013-3008-4
Article

Luminescent property and energy transfer from Ce3+ to Tb3+ in YAl3(BO3)4

Author information +
History +
PDF

Abstract

A series of Ce3+, Tb3+ or Ce3+/Tb3+ doped YAl3(BO3)4 phosphors are synthesized by a high temperature solid-state reaction, and their luminescent properties are investigated. YAl3(BO3)4:Ce3+ shows a broad emission band at 422 nm under the 367 nm radiation excitation. YAl3(BO3)4:Tb3+ can be efficiently excited by the ultraviolet (UV) light, and produces green emission. The emission intensity of YAl3(BO3)4:Tb3+ can be enhanced by adjusting Tb3+ doped content, and reaches the maximum at 0.06 mol Tb3+. When Ce3+ is codoped, the emission intensity of Tb3+ in YAl3(BO3)4 can be enhanced, but the commission international del’eclairage (CIE) chromaticity coordinates of YAl3(BO3)4:Tb3+ have almost no change. Moreover, the energy transfer from Ce3+ to Tb3+ in YAl3(BO3)4 is studied.

Keywords

Energy Transfer / Emission Intensity / Luminescent Property / Green Emission / Dope Content

Cite this article

Download citation ▾
Xiu-hong Dai, Hong-lian Li, Li-bin Pang, Shao-jie Gao. Luminescent property and energy transfer from Ce3+ to Tb3+ in YAl3(BO3)4. Optoelectronics Letters, 2013, 9(3): 194-197 DOI:10.1007/s11801-013-3008-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangP, SongJ, TianH, LuQ-f, WangD-j. Optoelectronics Letters, 2012, 8: 201

[2]

LiG, GengD, ShangM, ZhangY, PengC, ChengZ, LinJ. J. Phys. Chem. C, 2011, 115: 21882

[3]

HuaT, JunS, Qi-feiL, Da-jianW. Optoelectronics Letters, 2012, 8: 352

[4]

BrinkleyS E, PfaffN, DenaultK A, ZhangZ, HintzenH T B, SeshadriR, NakamuraS, DenbaarsS P. Appl. Phys. Lett., 2011, 99: 241106-1

[5]

ShangM, LiG, KangX, YangD, GengL, LinJ. ACS Appl. Mater. Interfaces, 2011, 3: 2738

[6]

YuR, DengB, ZhangG, AnY, ZhangJ, WangJ. J. Electrochem. Soc., 2011, 158: J255

[7]

SunJ, ZhangX, XiaZ, DuH. J. Appl. Phys., 2012, 111: 013101-1

[8]

DingX, LiangH, HouD, SuQ, DorenbosP, SunS, TaoY. J. Appl. Phys., 2011, 110: 113522-1

[9]

ShangM, LiG, GengD, YangD, KangX, ZhangY, LianH, LinJ. J. Phys. Chem. C, 2012, 116: 10222

[10]

SunJ, ZhangX, XiaZ, DuH. J. Electrochem. Soc., 2011, 158: J368

[11]

ZhuG, WangY, CiZ, LiuB, ShiY, XinS. J. Electrochem. Soc., 2011, 158: J236

[12]

RenZ, TaoC, YangH. J. Mater. Sci: Mater. Electron, 2008, 19: 319

[13]

JungK Y, JungH-K. J. Lumin., 2010, 130: 1970

[14]

YooH S, ImW B, KangJ H, JeonD Y. Opt. Mater., 2008, 31: 131

[15]

WangJ, ZhangZ, ZhangM, ZhangQ, SuQ, TangJ. J. Alloys Compd., 2009, 488: 582

[16]

ZhangZ, WangJ, ZhangM, ZhangQ, SuQ. Appl. Phys. B, 2008, 91: 529

[17]

NagA, KuttyT R N. Mater. Chem. Phys., 2005, 91: 524

[18]

BlasseG, GrabmaierB. Luminescent Materials, 1994, Berlin, Springer-Verlag

[19]

Van UitertL G. J. Electrochem. Soc., 1967, 114: 1048

[20]

OzawaL, JaffeP M. J. Electrochem. Soc., 1971, 118: 1678

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/