Design and performance of a polymer Mach-Zehnder interferometer electro-optic modulator at 1.55 μm

Chuan-tao Zheng , Lei Liang , Yun-fei Yan , Chun-sheng Ma , Da-ming Zhang

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (4) : 254 -258.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (4) : 254 -258. DOI: 10.1007/s11801-013-3003-9
Article

Design and performance of a polymer Mach-Zehnder interferometer electro-optic modulator at 1.55 μm

Author information +
History +
PDF

Abstract

Based on poled guest-host electro-optic (EO) polymer DR1/SU-8, a Mach-Zehnder interferometer (MZI) EO modulator operated at 1.55 μm is proposed. For achieving high response speed and high EO modulation efficiency, both waveguide structure and electrode structure are especially optimized. The impedance match and less index mismatch are achieved. The final characteristic impedance of electrode is about 49.4 Ω, and the microwave index and the light-wave index are 1.5616 and 1.6006, respectively. The device is fabricated using wet-etching technique and inductively coupled plasma (ICP) etching technique, and its performance is measured at 1.55 μm. Experimental results show that when the applied voltage is tuned, the modulator can be changed from ON state to OFF state. The insertion loss at ON state is 12 dB and the extinction ratio between ON and OFF states is about 10 dB. The high response speed is in nanosecond level for a square-wave signal. Therefore, the modulator possesses potential applications in high-speed optical networks on chip.

Keywords

Inductively Couple Plasma / Insertion Loss / Extinction Ratio / Single Mode Fiber / Index Mismatch

Cite this article

Download citation ▾
Chuan-tao Zheng, Lei Liang, Yun-fei Yan, Chun-sheng Ma, Da-ming Zhang. Design and performance of a polymer Mach-Zehnder interferometer electro-optic modulator at 1.55 μm. Optoelectronics Letters, 2013, 9(4): 254-258 DOI:10.1007/s11801-013-3003-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiangL, YanY, SunX, MaC, ZhangD, ZhengC. J. Optoelectron. Laser, 2012, 23: 1246

[2]

EnamiY, MathineD, DeRoseC T, NorwoodR A, LuoJ, JenA K Y, PeyghambarianN. Appl. Phys. Lett., 2009, 94: 213513

[3]

LinY H, LiJ K, ChuT Y, HsuH K. Opt. Express, 2010, 18: 10104

[4]

ZhangH, ZhouW, YangJ, LiX, TanJ. J. Optoelectron. Laser, 2011, 22: 1483

[5]

ZhengC T, MaC S, YanX, WangX Y, ZhangD M. Opt. Commun., 2008, 281: 5998

[6]

ZhengC T, MaC S, YanX, WangX Y, ZhangD M. J. Mod. Opt., 2009, 56: 615

[7]

ZhengC T, MaC S, YanX, WangX Y, ZhangD M. Opt. & Laser Technol., 2010, 42: 457

[8]

ZhengC T, MaC S, CuiZ C, YanX, ZhangD M, TianC W. Opt. Quant. Electron., 2011, 42: 327

[9]

ZhengC T, MaC S, YanX, CuiZ C, ZhangD M. Appl. Phys. B, 2011, 102: 831

[10]

ZhengC T, MaC S, YanX, WangX Y, ZhangD M. Appl. Phys. B, 2009, 96: 95

[11]

ZhengC T, MaC S, YanX, WangX Y, ZhangD M. Appl. Phys. B, 2010, 98: 511

[12]

LeeM, KatzH E, ErbenC, GillD M, GopalanP, HeberJ D. Science, 2002, 298: 1401

[13]

MichelS, ZyssJ, Ledoux-RakI, NguyenC T. Proceedings of SPIE, 2010, 7599: 759901

[14]

EikichiY, YoshikiN, KazuhikoA. MTT-S International Microwave Symposium Diqest, 1983, 3: 119

[15]

ZhuN H, QiuW, PunE Y B, ChungP S. IEEE Transactions on Microwave Theory and Techniques, 1997, 45: 288

[16]

BalakrishnanM, FacciniM, DiemeerM B J, KleinE J, SengoG, DriessenA, VerboomW, ReinhoudtD N. Appl. Phys. Lett., 2008, 92: 153310

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/