Improved current efficiency in organic light-emitting devices with a hole blocking layer

Hui-shan Yang

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (4) : 250 -253.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (4) : 250 -253. DOI: 10.1007/s11801-013-3002-x
Article

Improved current efficiency in organic light-emitting devices with a hole blocking layer

Author information +
History +
PDF

Abstract

A hole-blocking layer (HBL) of 4,7-diphenyl-1,10-phenanthroline (BPhen) is incorporated between the emitting layer (EML) and the electron transport layer (ETL) for a tris-(8-hydroxyqunoline)aluminum based organic light-emitting device (OLED). Such a structure helps to reduce the hole-leakage to the cathode, resulting in an improved current efficiency. The BPhen improves the balance of hole and electron injections. The current efficiency is improved compared with that of the device without the blocking layer. The highest luminous efficiency of the device with 6 nm BPhen acting as a blocking layer is 3.44 cd/A at 8 V, which is improved by nearly 1.5 times as compared with that of the device without it.

Keywords

High Occupied Molecular Orbital / Current Efficiency / Blocking Layer / Hole Transport Layer / Electron Transport Layer

Cite this article

Download citation ▾
Hui-shan Yang. Improved current efficiency in organic light-emitting devices with a hole blocking layer. Optoelectronics Letters, 2013, 9(4): 250-253 DOI:10.1007/s11801-013-3002-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TangC W, Van SlykeS A. Appl. Phys. Lett., 1987, 51: 913

[2]

KidoJ, KimuraM, NagaiK. Science, 1995, 267: 1332

[3]

ChenB, LiY, ChuY, ZhengA, FengJ, LiuZ, WuH, YangW. Organic Electronics, 2013, 14: 744

[4]

LeeD-H, ParkJ H, ChaeH, ChoS M. Organic Electronics, 2009, 10: 1345

[5]

HsiaoC-H, LiuS-W, ChenC-T, LeeJ-H. Organic Electronics, 2010, 11: 1500

[6]

ChibaT, PuY-J, MiyazakiR, NakayamaK, SasabeH, KidoJ. Organic Electronics, 2011, 12: 710

[7]

EomS-H, ZhengY, WrzesniewskiE, LeeJ, ChopraN, SoF, XueJ. Organic Electronics, 2009, 10: 686

[8]

LiangS, WuZ, ZhaoX, WangD, HouX, ChenZ, GongQ. Optics Communications, 2012, 285: 1625

[9]

BaiY, FengJ, LiuY-F, SongJ-F, SimonenJ, JinY, ChenQ-D, ZiJ, SunH-B. Organic Electronics, 2011, 12: 1927

[10]

SunZ, DingX, DingB, GaoX, HuY, ChenX, HeY, HouX. Organic Electronics, 2013, 14: 511

[11]

PuY-J, YoshizakiM, AkiniwaT, NakayamaK-i, KidoJ. Organic Electronics, 2009, 10: 877

[12]

KhalifaM B, VaufreyD, TardyJ. Organic Electronics, 2004, 5: 187

[13]

TutisE, BernerD, ZuppiroliL. J. Appl. Phys., 2003, 93: 4594

[14]

ParkY W, KimY M, ChoiJ H, ParkT H, HuhJ W, KimH S, ChoM J, ChoiD H, JuB-K. Appl. Phys. Lett., 2009, 95: 143305

[15]

IizumiK, SaikiK, KomaA. Surface Science, 2002, 518: 126

[16]

NoguchiY, SatoN, MiyazakiY, IshiiH. Appl. Phys. Lett., 2010, 96: 143305

[17]

LiY Q, FungM D, XieZ Y, LeeS T, HungL S, ShiJ M. Adv. Mater., 2002, 14: 1317

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/