Miniature fiber Fabry-Perot sensors based on fusion splicing

Jia-li Zhu, Ming Wang, Chun-di Yang, Ting-ting Wang

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (2) : 85-88.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (2) : 85-88. DOI: 10.1007/s11801-013-2432-9
Article

Miniature fiber Fabry-Perot sensors based on fusion splicing

Author information +
History +

Abstract

Fiber-optic Fabry-Perot (F-P) sensors are widely investigated because they have several advantages over conventional sensors, such as immunity to electromagnetic interference, ability to operate under bad environments, high sensitivity and the potential for multiplexing. A new method to fabricate micro-cavity Fabry-Perot interferometer is introduced, which is fusion splicing a section of conventional single-mode fiber (SMF) and a section of hollow core or solid core photonic crystal fiber (PCF) together to form a micro-cavity at the splice joint. The technology of fusion splicing is discussed, and two miniature optical fiber sensors based on Fabry-Perot interference using fusion splicing are presented. The two sensors are completely made of fused silica, and have good high-temperature capability.

Keywords

Cavity Length / Photonic Crystal Fiber / Hollow Core / Energy Density Distribution / Splice Loss

Cite this article

Download citation ▾
Jia-li Zhu, Ming Wang, Chun-di Yang, Ting-ting Wang. Miniature fiber Fabry-Perot sensors based on fusion splicing. Optoelectronics Letters, 2013, 9(2): 85‒88 https://doi.org/10.1007/s11801-013-2432-9

References

[1]
YablonA D. Optical Fiber Fusion Splicing, 2005, Heidelberg, Germany, Springer-Verlag Press: 1
[2]
ChongJ H, RaoM K, ZhuY, ShumY P. IEEE Photon. Technol. Lett., 2003, 15: 942
CrossRef Google scholar
[3]
VillatoroJ, MinkovichV P, PruneriV, BadenesG. Opt. Express, 2007, 15: 1491
CrossRef Google scholar
[4]
TseM L V, TamH Y, FuL B, ThomasB K, DongL, LuC, WaiP K A. IEEE Photon. Technol. Lett., 2009, 21: 164
CrossRef Google scholar
[5]
ZhuT, XiaoF, XuL, LiuM, DengM, ChiangK S. Opt. Express, 2009, 20: 24465
CrossRef Google scholar
[6]
FuG, JinW, FuX, BiW. IEEE Photon. Jour., 2012, 4: 1028
CrossRef Google scholar
[7]
RaoY J, ZhuT, YangX C, DuanD W. Opt. Lett., 2007, 32: 2662
CrossRef Google scholar
[8]
FrazaoO, ArefS H, BaptistaJ M, SantosJ L, LatifiH, FarahiF, KobelkeJ, SchusterK. IEEE Photon. Technol. Lett., 2009, 21: 1229
CrossRef Google scholar
[9]
VillatoroJ, FinazziV, CovielloG, PruneriV. Opt. Lett., 2009, 34: 2441
CrossRef Google scholar
[10]
XuB, LiJ-q, LiY, SunM, ZhaoX-w, DongX-y. Journal of Optoelectronics·Laser, 2012, 23: 839
[11]
DuanD-w, RaoY-j, HouY-s, ZhuT. Applied Optics, 2012, 51: 1033
CrossRef Google scholar
[12]
TangC-p, DengM, ZhuT, BaoY-j. Journal of Optoelectronics·Laser, 2011, 22: 1304
[13]
XiaoL, JinW, DemokanM S. Opt. Express, 2005, 13: 9014
CrossRef Google scholar
[14]
ChongJ H, RaoM K. Opt. Express, 2003, 11: 1366
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.91123015 and 61178044), and the Scientific Innovation Research of College Graduate in Jiangsu Province (No. CXLX11_0890).

Accesses

Citations

Detail

Sections
Recommended

/