Effect of thickness on optoelectrical properties of Nb-doped indium tin oxide thin films deposited by RF magnetron sputtering

Shi-na Li, Rui-xin Ma, Chun-hong Ma, Dong-ran Li, Yu-qin Xiao, Liang-wei He, Hong-min Zhu

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (3) : 198-200.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (3) : 198-200. DOI: 10.1007/s11801-013-2411-1
Article

Effect of thickness on optoelectrical properties of Nb-doped indium tin oxide thin films deposited by RF magnetron sputtering

Author information +
History +

Abstract

Niobium-doped indium tin oxide (ITO:Nb) thin films are prepared on glass substrates with various film thicknesses by radio frequency (RF) magnetron sputtering from one piece of ceramic target material. The effects of thickness (60–360 nm) on the structural, electrical and optical properties of ITO: Nb films are investigated by means of X-ray diffraction (XRD), ultraviolet (UV)-visible spectroscopy, and electrical measurements. XRD patterns show the highly oriented (400) direction. The lowest resistivity of the films without any heat treatment is 3.1×10−4Ω·cm−1, and the resistivity decreases with the increase of substrate temperature. The highest Hall mobility and carrier concentration are 17.6 N·S and 1.36×1021 cm−3, respectively. Band gap energy of the films depends on substrate temperature, which varies from 3.48 eV to 3.62 eV.

Keywords

Carrier Concentration / Hall Mobility / Indium Oxide / Flat Panel Display / Radio Frequency Magnetron

Cite this article

Download citation ▾
Shi-na Li, Rui-xin Ma, Chun-hong Ma, Dong-ran Li, Yu-qin Xiao, Liang-wei He, Hong-min Zhu. Effect of thickness on optoelectrical properties of Nb-doped indium tin oxide thin films deposited by RF magnetron sputtering. Optoelectronics Letters, 2013, 9(3): 198‒200 https://doi.org/10.1007/s11801-013-2411-1

References

[1]
GinleyetalD S. Handbook of Transparent Conductors, 2010, 1
[2]
DelahoyA E, ChenL, AkhtarM, SangB, GuoS. Solar Energy, 2004, 77: 785
CrossRef Google scholar
[3]
TaharR B H, BanT, OhyaY, TakahashiY. J. Appl. Phys., 1998, 83: 2631
CrossRef Google scholar
[4]
AperathitisE, BenderM, CimallaV, EckeG, ModreanuM. J. Appl. Phys., 2003, 94: 1258
CrossRef Google scholar
[5]
LanY F, PengW C, LoY H, HeJ L. Materials Research Bulletin, 2009, 44: 1760
CrossRef Google scholar
[6]
MengL J, GaoJ, SantosdM P d, WangX, WangT T. Thin Solid Films, 2008, 516: 1365
CrossRef Google scholar
[7]
ZhengJ P, KwokH S. Applied Physics Letters, 1993, 63: 1
CrossRef Google scholar
[8]
AkkadF L, PunnoseA, PrabuJ. J. Appl. Phys. A, 2000, 71: 157
[9]
SasabayashiaT, ItoaN, NishimuraaE, KonaM, SongaP K, UtsumibK, KaijocA, ShigesatoY. Thin Solid Films, 2003, 445: 219
CrossRef Google scholar
[10]
LuisA, Nunes de CarvalhoC, LavaredaG, AmaralA, BrogueiraP, GodinhM H. Vacuum, 2002, 64: 475
CrossRef Google scholar
[11]
BeloG S, da SilvaB J P, de VasconcelosE A, de AzevedoW M, da SilvaE FJr. Applied Surface Science, 2008, 255: 755
CrossRef Google scholar
[12]
AmaralA, BrogueiraP, Nunes de CarvalhoC, LavaredaG. Journal of Nanoscience and Nanotechnology, 2010, 10: 2713
CrossRef Google scholar
[13]
ZhangB, XuX F, DongX P, WuJ S. Optoelectronics Letters, 2008, 4: 137
CrossRef Google scholar
[14]
ZhangB, YuB, XuX F, ZhaoP. Journal of Optoelectronics · Laser, 2010, 21: 59
[15]
ZhangB, DongX P, XuX F, WangX J, WuJ S. Materials Science in Semiconductor Processing, 2007, 10: 264
CrossRef Google scholar
[16]
PaengS H, ParkMW, SungY M. Surface and Coatings Technology, 2010, 205: 210
CrossRef Google scholar
[17]
GuptaR K, GhoshK, PatelR, KaholPK. Applied Surface Science, 2010, 518: 3081
[18]
YangM, FengJ H, LiG F, ZhangQ. Journal of Crystal Growth, 2008, 310: 3474
CrossRef Google scholar
[19]
KangY M, KwonS H, ChoiJ H, ChoY J, SongP K. Surface and Coatings Technology, 2010, 205: 210
CrossRef Google scholar
[20]
CaoC B, ZhouA Y, MuS H, ZhangG S, SongX P, SunZ Q. Materials Science and Engineering: B, 2011, 176: 1430
CrossRef Google scholar
[21]
ChungS M, ShinJ H, CheongW S, HwangC S, ChoaK I, KimY J. Ceramics International, 2012, 38: s617
CrossRef Google scholar
[22]
LiS N, MaR X, MaC H, HeL W, XiaoY Q, HouJ G, JiaoS Q. Optoelectronics Letters, 2012, 8: 460
CrossRef Google scholar
[23]
ZhangN, LiuJ X, ZengS N. Rare Metal Materials and Engineering, 2008, 37: 164

Accesses

Citations

Detail

Sections
Recommended

/