Effect of thickness on optoelectrical properties of Nb-doped indium tin oxide thin films deposited by RF magnetron sputtering

Shi-na Li , Rui-xin Ma , Chun-hong Ma , Dong-ran Li , Yu-qin Xiao , Liang-wei He , Hong-min Zhu

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (3) : 198 -200.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (3) : 198 -200. DOI: 10.1007/s11801-013-2411-1
Article

Effect of thickness on optoelectrical properties of Nb-doped indium tin oxide thin films deposited by RF magnetron sputtering

Author information +
History +
PDF

Abstract

Niobium-doped indium tin oxide (ITO:Nb) thin films are prepared on glass substrates with various film thicknesses by radio frequency (RF) magnetron sputtering from one piece of ceramic target material. The effects of thickness (60–360 nm) on the structural, electrical and optical properties of ITO: Nb films are investigated by means of X-ray diffraction (XRD), ultraviolet (UV)-visible spectroscopy, and electrical measurements. XRD patterns show the highly oriented (400) direction. The lowest resistivity of the films without any heat treatment is 3.1×10−4Ω·cm−1, and the resistivity decreases with the increase of substrate temperature. The highest Hall mobility and carrier concentration are 17.6 N·S and 1.36×1021 cm−3, respectively. Band gap energy of the films depends on substrate temperature, which varies from 3.48 eV to 3.62 eV.

Keywords

Carrier Concentration / Hall Mobility / Indium Oxide / Flat Panel Display / Radio Frequency Magnetron

Cite this article

Download citation ▾
Shi-na Li, Rui-xin Ma, Chun-hong Ma, Dong-ran Li, Yu-qin Xiao, Liang-wei He, Hong-min Zhu. Effect of thickness on optoelectrical properties of Nb-doped indium tin oxide thin films deposited by RF magnetron sputtering. Optoelectronics Letters, 2013, 9(3): 198-200 DOI:10.1007/s11801-013-2411-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GinleyetalD S. Handbook of Transparent Conductors, 2010, 1

[2]

DelahoyA E, ChenL, AkhtarM, SangB, GuoS. Solar Energy, 2004, 77: 785

[3]

TaharR B H, BanT, OhyaY, TakahashiY. J. Appl. Phys., 1998, 83: 2631

[4]

AperathitisE, BenderM, CimallaV, EckeG, ModreanuM. J. Appl. Phys., 2003, 94: 1258

[5]

LanY F, PengW C, LoY H, HeJ L. Materials Research Bulletin, 2009, 44: 1760

[6]

MengL J, GaoJ, SantosdM P d, WangX, WangT T. Thin Solid Films, 2008, 516: 1365

[7]

ZhengJ P, KwokH S. Applied Physics Letters, 1993, 63: 1

[8]

AkkadF L, PunnoseA, PrabuJ. J. Appl. Phys. A, 2000, 71: 157

[9]

SasabayashiaT, ItoaN, NishimuraaE, KonaM, SongaP K, UtsumibK, KaijocA, ShigesatoY. Thin Solid Films, 2003, 445: 219

[10]

LuisA, Nunes de CarvalhoC, LavaredaG, AmaralA, BrogueiraP, GodinhM H. Vacuum, 2002, 64: 475

[11]

BeloG S, da SilvaB J P, de VasconcelosE A, de AzevedoW M, da SilvaE FJr. Applied Surface Science, 2008, 255: 755

[12]

AmaralA, BrogueiraP, Nunes de CarvalhoC, LavaredaG. Journal of Nanoscience and Nanotechnology, 2010, 10: 2713

[13]

ZhangB, XuX F, DongX P, WuJ S. Optoelectronics Letters, 2008, 4: 137

[14]

ZhangB, YuB, XuX F, ZhaoP. Journal of Optoelectronics · Laser, 2010, 21: 59

[15]

ZhangB, DongX P, XuX F, WangX J, WuJ S. Materials Science in Semiconductor Processing, 2007, 10: 264

[16]

PaengS H, ParkMW, SungY M. Surface and Coatings Technology, 2010, 205: 210

[17]

GuptaR K, GhoshK, PatelR, KaholPK. Applied Surface Science, 2010, 518: 3081

[18]

YangM, FengJ H, LiG F, ZhangQ. Journal of Crystal Growth, 2008, 310: 3474

[19]

KangY M, KwonS H, ChoiJ H, ChoY J, SongP K. Surface and Coatings Technology, 2010, 205: 210

[20]

CaoC B, ZhouA Y, MuS H, ZhangG S, SongX P, SunZ Q. Materials Science and Engineering: B, 2011, 176: 1430

[21]

ChungS M, ShinJ H, CheongW S, HwangC S, ChoaK I, KimY J. Ceramics International, 2012, 38: s617

[22]

LiS N, MaR X, MaC H, HeL W, XiaoY Q, HouJ G, JiaoS Q. Optoelectronics Letters, 2012, 8: 460

[23]

ZhangN, LiuJ X, ZengS N. Rare Metal Materials and Engineering, 2008, 37: 164

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/