NAND gate with quantum dot-semiconductor optical amplifiers-based Mach-Zehnder interferometer

Amer Kotb

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (2) : 89-92.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (2) : 89-92. DOI: 10.1007/s11801-013-2381-3
Article

NAND gate with quantum dot-semiconductor optical amplifiers-based Mach-Zehnder interferometer

Author information +
History +

Abstract

The NAND operation at 250 Gbit/s based on quantum dot-semiconductor optical amplifiers (QD-SOAs) is modeled. By solving the rate equations of SOAs in the form of a Mach-Zehnder interferometer (MZI), the performance of NAND gate is numerically investigated. The model takes the effects of amplified spontaneous emission (ASE) and the input pulse energy on the system’s quality factor into account. Results show that NAND gate in QD-SOA-MZI based structure is feasible at 250 Gbit/s with a proper quality factor. The decrease in quality factor is predicted for high spontaneous emission factor (NSP). For an ideal amplifier (NSP = 2), the Q-factor is 17.8 for 30 dB gain.

Keywords

Semiconductor Optical Ampli / Amplify Spontaneous Emission / NAND Gate / Carrier Heating / Input Pulse Energy

Cite this article

Download citation ▾
Amer Kotb. NAND gate with quantum dot-semiconductor optical amplifiers-based Mach-Zehnder interferometer. Optoelectronics Letters, 2013, 9(2): 89‒92 https://doi.org/10.1007/s11801-013-2381-3

References

[1]
DuttaN K, WangQ. Semiconductor Optical Amplifiers, 2006, New York, World Scientific
CrossRef Google scholar
[2]
HoubavlisT, ZoirosK, HatziefremidisA, AvramopoulousH, OcchiL, GuekosG, HansmannS, BurkhardH, Dall’AraR. Electronics Letter, 1999, 35: 1650
CrossRef Google scholar
[3]
BintjasC, KalyvasM, TheophilopoulosG, StathopoulosT, AvramopoulousH, OcchiL, ScharesL, GuekosG, HansmannS, Dall’AraR. IEEE Photonics Technology Letters, 2000, 12: 834
CrossRef Google scholar
[4]
FjeldeT, WolfsonD, KlochA, DagensB, CoquelinA, GuillemotI, GaboritF, PoingtandF, RenaudM, CoquelinA, GuillemotI, GaboritF, PoingtF, RenaudM. Electronics Letter, 2000, 36: 1863
CrossRef Google scholar
[5]
ChenH, ZhuG, JaquesJ, LeutholdJ, PiccirilliandA B, DuttaN K. Electronics Letter, 2002, 38: 1271
CrossRef Google scholar
[6]
GinovartF, SimonJ C. Optics A Pure Applied Optics, 2002, 4: 283
CrossRef Google scholar
[7]
SugawaraM, AkiyamaT, HatoriN, NakataY, EbeH, IshikawaH. Meas. Sci. Technol., 2002, 13: 1683
CrossRef Google scholar
[8]
SunH, WangQ, DongH, DuttaN K. Microwave and Optical Technology Letters, 2006, 48: 29
CrossRef Google scholar
[9]
MaS, ChenZ, SunH, DuttaN K. Optics Express, 2010, 18: 6417
CrossRef Google scholar
[10]
KotbA, MaS, ChenZ, DuttaN K, SaidG. Optics Communications, 2011, 284: 5798
CrossRef Google scholar
[11]
KotbA, MaedaJ. Optoelectronics Letters, 2012, 8: 437
CrossRef Google scholar
[12]
KotbA, MaS, ChenZ, DuttaN K, SaidG. Optics Communications, 2010, 283: 4707
CrossRef Google scholar
[13]
DimitriadouE, ZoirosK. Optics and Laser Technology, 2013, 45: 79
CrossRef Google scholar
[14]
RostamiA, NejadH, QartavolR, SaghaiH. IEEE J. Quantum Electronics, 2010, 46: 354
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/