Effects on extraordinary transmission of TE wave through varying structure of sub-wavelength metallic gratings without host media

Ya-wei Wang , Yu-jiao Chen , Zeng-hui Meng , Xue-fu Shang , Wei-feng Jin , Min Bu , Yuan-yuan Xu , Xing-long Zhu

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 77 -80.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 77 -80. DOI: 10.1007/s11801-013-2376-0
Article

Effects on extraordinary transmission of TE wave through varying structure of sub-wavelength metallic gratings without host media

Author information +
History +
PDF

Abstract

A model of sub-wavelength metallic grating without host media is proposed. Under the excitation of TE polarized light, the extraordinary transmission is also found, and their transmission energy distributions corresponding to different structural parameters of this model are calculated systematically by using finite difference time domain (FDTD) method. The influence of slit width, grating thickness and grating period on the location of transmission peak is obtained. By studying these relations, it is found that Fabry-Perot-like (FPL) effect of the slit is the main physical reason of this extraordinary transmission. Varying the slit width can cause the change of reflection phase transition at both ends, and then the characteristics of FPL resonance of slit cavity are affected. The surface mode of metallic gratings has less effect on the location of transmission peak.

Keywords

Standing Wave / Slit Width / Transmission Peak / Finite Difference Time Domain / Grating Period

Cite this article

Download citation ▾
Ya-wei Wang, Yu-jiao Chen, Zeng-hui Meng, Xue-fu Shang, Wei-feng Jin, Min Bu, Yuan-yuan Xu, Xing-long Zhu. Effects on extraordinary transmission of TE wave through varying structure of sub-wavelength metallic gratings without host media. Optoelectronics Letters, 2013, 9(1): 77-80 DOI:10.1007/s11801-013-2376-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YangY., HuangY., HuangH., WangQ., RenX.. Chinese Journal of Lasers, 2009, 36: 2352

[2]

WangF., SuJ., WangF., LiuL., WangW., MoL.. Acta Optica Sinica, 2010, 30: 508

[3]

ZhouY., ShenS., YeY., PuD., ChenL.. Acta Optica Sinica, 2010, 30: 1158

[4]

BelotelovV. I., DoskolovichL. L., KotovV. A., BezusE. A., BykovD. A., ZvezdinA. K.. Opt. Commun., 2007, 278: 104

[5]

VengurlekarA. S.. Indian Acad Sciences, 2010, 98: 1020

[6]

DelgadoV., MarquésR., JelinekL.. Opt. Express, 2011, 19: 13612

[7]

MarquésR., MesaF., JelinekL.. Opt. Express, 2009, 17: 5571

[8]

KongW.-j., WangS.-h., YunM.-j., SunX., WeiS.-j., ZhangW.-f., ZhengB.-b., JiangL.-n.. Journal of Optoelectronics·Laser, 2011, 22: 1769

[9]

ShiJ.-x., QinL., YeS.-j., ZhangN., LiuY., NingY.-q., TongC.-z., ZengY.-g., WangL.-j.. Journal of Optoelectronics·Laser, 2011, 22: 1488

[10]

HaoZ.-q., ChenJ., ChenZ.-q., LuW., XuJ.-j., SunQ.. Journal of Optoelectronics · Laser, 2012, 23: 1211

[11]

EbbesenT. W., LezecH. J., GhaemiH. F., ThioT., WolffP. A.. Nature, 1998, 391: 667

[12]

MorenoE., Martín-MorenoL., García-VidalF. J.. J. Opt. A: Pure Appl. Opt., 2006, 8: S94

[13]

WangY.-W., LiuM.-L., LiuR.-J., LeiH.-N., DengX.-B.. Acta Phys. Sin., 2010, 59: 4030

[14]

KuznetsovS. A., Navarro-CíaM., KubarevV. V., GelfandA. V., BerueteM., CampilloI., SorollaM.. Opt. Express, 2009, 17: 11730

[15]

GuillauméeM., NikitinA. Y., KleinM. J. K., DunbarL. A., SpassovV., EckertR., Martín-MorenoL., García-VidalF. J., StanleyR. P.. Opt. Express, 2010, 18: 9722

[16]

WangY.-W., LiuM.-L., LiuR.-J., LeiH.-N., TianX.-L.. Acta Phys. Sin., 2011, 60: 1

[17]

TanC., YiY., WangG.. Acta Phys. Sin., 2002, 51: 1063

[18]

PangY., GenetC., EbbesenT. W.. Opt. Commun., 2007, 280: 10

[19]

Garcia-VidalF. J., Martin-MorenoL.. Phys. Rev. B, 2002, 66: 155412

[20]

WangY., MengZ., FengW., TianX.. Acta Optica Sinica, 2012, 32: 0231002

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/