Dependence of birefringence on elliptical-hole orientation in photonic crystal fibers

Xiao-ling Tan , Ling-fen Zhang , Wen-xiao Jiang , Qi Zhang , Jun Zhou

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 61 -64.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 61 -64. DOI: 10.1007/s11801-013-2355-5
Article

Dependence of birefringence on elliptical-hole orientation in photonic crystal fibers

Author information +
History +
PDF

Abstract

In this paper, the dependence of birefringence on the orientation of elliptical holes in triangular-lattice elliptical-hole photonic crystal fibers (PCFs) is investigated numerically. A resonant enhancement of birefringence between the anisotropic lattice arrangement and oriented elliptical holes is observed, and the birefringence varies periodically with the ellipticalhole orientation. When the major axes of adjacent elliptical holes are parallel, the birefringence approaches the maximum. Based on the numeric analysis, a novel highly birefringent PCF is proposed, and the maximum modal birefringence of 0.086 is achieved.

Keywords

Photonic Crystal Fiber / Fiber Core / Elliptical Hole / Polarization Mode Dispersion / Resonant Enhancement

Cite this article

Download citation ▾
Xiao-ling Tan, Ling-fen Zhang, Wen-xiao Jiang, Qi Zhang, Jun Zhou. Dependence of birefringence on elliptical-hole orientation in photonic crystal fibers. Optoelectronics Letters, 2013, 9(1): 61-64 DOI:10.1007/s11801-013-2355-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BirksT. A., KnightJ. C., RussellP. J.. Opt. Lett., 1997, 22: 961

[2]

KnightJ. C., ArriagaJ., BirksT. A., Ortigosa-BlanchA., WadsworthW. J., RussellP. J.. IEEE Photon. Technol. Lett., 2000, 12: 807

[3]

ReevesW. H., KnightJ. C., RussellP. J., RobertsP. J.. Opt. Express, 2002, 10: 609

[4]

RankaJ. K., WindelerR. S., StentzA. J.. Opt. Lett., 2000, 25: 25

[5]

HosakaT., OkamotoK., MiyaT., SasakiY., EdahiroT.. Electron. Lett., 1981, 17: 530

[6]

BirchR. D., PayneD. N., VarnhamM. P.. Electron. Lett., 1982, 18: 1036

[7]

BuczynskiR., KujawaI., PyszD., MartynkienT., BerghmansF., ThienpontH., StepienR.. Appl. Phys. B, 2010, 99: 13

[8]

Beltrán-MejÍaF., ChesiniG., SilvestreE., GeorgeA. K., KnightJ. C., CordeiroC. M.. Opt. Lett., 2010, 35: 544

[9]

ZhuZ., BrownT. G.. Opt. Lett., 2003, 28: 2306

[10]

SchreiberT., SchultzH., SchmidtO., RöserF., LimpertJ., TünnermannA.. Opt. Express, 2005, 13: 3637

[11]

SunB., ChenM. Y., YuR. J., ZhangY. K., ZhouJ.. Optoelectronics Letters, 2011, 7: 253

[12]

ZhangS. S., ZhangW. G., LiuZ. L., LiX. L.. Journal of Optoelectronics Laser, 2011, 22: 685

[13]

WuC., LiJ., FengX., GuanB. O., TamH. Y.. J. Lightwave Technol., 2011, 29: 943

[14]

YueY., KaiG. Y., WangZ., SunT. T., JinL., LuY. F., ZhangC. S., LiuJ. G., LiY., LiuY. G., YuanS. Z., DongX. Y.. Opt. Lett., 2007, 32: 469

[15]

KujawaI., BuczynskiR., MartynkienT., SadowskiM., PyszD., StepienR., WaddieA., TaghizadehM. R.. Opt. Fiber Technol., 2012, 18: 220

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/