Microlens fabricated in silicon on insulator using porous silicon

Fu-ru Zhong, Xiao-yi Lü, Zhen-hong Jia, Min Tian

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (2) : 105-107.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (2) : 105-107. DOI: 10.1007/s11801-013-2352-8
Article

Microlens fabricated in silicon on insulator using porous silicon

Author information +
History +

Abstract

In order to realize the planar gradient refractive index (GRIN) microlens which is based upon porous silicon (PSi) and fabricated on silicon on insulator (SOI), a novel anodization method is used by applying lateral electric field. The microlens with smooth variation of the effective optical thickness is achieved. The lens is transparent in the infrared region, including the optical communication window (1.3 μm<λ<1.6 μm). This approach also allows the fabrication of an array of such lenses on SOI, and the GRIN microlens can be used as potential components in future silicon-based integrated optical circuits.

Keywords

Porous Silicon / Apply Physic Letter / Grin Lens / Anodization Method / Lateral Electric Field

Cite this article

Download citation ▾
Fu-ru Zhong, Xiao-yi Lü, Zhen-hong Jia, Min Tian. Microlens fabricated in silicon on insulator using porous silicon. Optoelectronics Letters, 2013, 9(2): 105‒107 https://doi.org/10.1007/s11801-013-2352-8

References

[1]
YeC F, McLeodR R. Opt. Lett., 2008, 33: 2575
CrossRef Google scholar
[2]
VermaA, SharmaA. Advanced Materials, 2010, 22: 5306
CrossRef Google scholar
[3]
LermanG M, GrajowerM, YanaiA, LevyU. Opt. Lett., 2011, 36: 3972
CrossRef Google scholar
[4]
JiangX-p, LiuD-s, ZhangF-j, ZhouS-m, ZhaoZ-f, ChenX-m. Journal of Optoelectronics·Laser, 2011, 22: 1143
[5]
LeeC-T, LiY, LinH-Y, WuS-T. Opt. Express, 2011, 19: 17402
CrossRef Google scholar
[6]
CasseB D F, LuW T, HuangY J, SridharS. Applied Physics Letters, 2008, 93: 053111
CrossRef Google scholar
[7]
ChenC F, TzengS D, ChenH Y, GwoS. Opt. Lett., 2005, 30: 652
CrossRef Google scholar
[8]
IlyasS, GalM. Applied Physics Letters, 2006, 89: 211123
CrossRef Google scholar
[9]
TianJ, YanM, QiuM, RibbingC G, LiuY-Z, ZhangD-Z, LiZ Y. Applied Physics Letters, 2008, 93: 191114
CrossRef Google scholar
[10]
StriemerC C, FauchetP M. Applied Physics Letters, 2002, 81: 2980
CrossRef Google scholar
[11]
HwangJ D, HwangS B, ChouC H, ChenY H. Thin Solid Films, 2011, 519: 2313
CrossRef Google scholar
[12]
MaL L, ZhouY C, JiangN, LuX, ShaoJ, LuW, GeJ, DingX M, HouX Y. Applied Physics Letters, 2006, 88: 171907
CrossRef Google scholar
[13]
ThompsonC M, RuminskiA M, SegaA G, SailorM J, MiskellyG M. Langmuir, 2011, 27: 8967
CrossRef Google scholar
[14]
KhungY L, VoelckerN H. Optical Materials, 2009, 32: 234
CrossRef Google scholar
[15]
HwangK, KimS, ParkY, JeonH, JeongJ. Appl. Opt., 2008, 47: 1628
CrossRef Google scholar
[16]
SunP, HuM, LiM D, MaS Y. Acta Physico- Chimica Sinica, 2012, 28: 489
[17]
ZhongF-r, UlX-y, JiaZ-h. Optoelectronics Letters, 2011, 7: 0133
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.60968002), and the Excellent Youth Foundation of Shihezi University (No.2012ZRKXYQ-YD20).

Accesses

Citations

Detail

Sections
Recommended

/