A new method to characterize the metallic-oxide films for grayscale lithography

Li-ping Sun , Shuang-gen Zhang , Zhe Wang , Jia-chun Deng , Jiang Lü

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 34 -37.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 34 -37. DOI: 10.1007/s11801-013-2351-9
Article

A new method to characterize the metallic-oxide films for grayscale lithography

Author information +
History +
PDF

Abstract

In order to characterize the metallic-oxide grayscale films fabricated by laser direct writing (LDW) in indium film, a new method with micro-Raman spectroscopy and atomic force microscope (AFM) is proposed. Raman spectra exhibit the characteristic band of In2O3 centered at 490 cm−1, in which the intensities increase with the decreasing optical density of the In-In2O3 grayscale films. The mapping information of Raman spectra shows that the signal intensities of the film in the same grayscale area are uniform. Combining with the information of In-In2O3 grayscale film from AFM, the quantitative relationship between the concentration of In2O3 and the Raman signal intensity is shown. Compared with the conventional methods, the resolution of micro-Raman scattering method is appropriate, and the scanning speed is proper to analyze the structure of metallic-oxide grayscale films.

Keywords

Atomic Force Microscope / Select Area Electron Diffraction / Raman Signal / Body Centered Cubic / Laser Direct Writing

Cite this article

Download citation ▾
Li-ping Sun, Shuang-gen Zhang, Zhe Wang, Jia-chun Deng, Jiang Lü. A new method to characterize the metallic-oxide films for grayscale lithography. Optoelectronics Letters, 2013, 9(1): 34-37 DOI:10.1007/s11801-013-2351-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RogersJ. D., KärkkäinenA. H. O., TkaczykT., RantalaJ. T., DescourM. R.. Opt. Express, 2004, 12: 1294

[2]

ChenY., ShenG., MengL., MaL., LiCh.. Journal of Optoelectronics Laser, 2011, 22: 1451

[3]

ChristophersenM., PhlipsB. F.. Appl. Phys. Lett., 2008, 92: 194102

[4]

WaitsC. M., ModafeA., GhodssiR.. J. Micromech. Microeng., 2003, 13: 170

[5]

ChenX., HanD., ZhangD., SunJ., GengX., ZhaoY.. Journal of Optoelectronics Laser, 2011, 22: 1022

[6]

ShigesatoY., TakakiS., HaranohT.. J. Appl. Phys., 1992, 71: 3356

[7]

TamakiJ., NaruoC., YamamotoY., MastuokaM.. Sens. Actuators B, 2002, 83: 190

[8]

ZhangD. H., LiC., HanS., LiuX. L., TangT., JinW., ZhouC. W.. Appl. Phys. Lett., 2003, 82: 112

[9]

NguyenP., NgH. T., YamadaT., SmithM. K., LiJ., HanJ., MeyyappanM.. Nano. Lett., 2004, 4: 651

[10]

GuoC., ZhangJ., MiaoJ., FanY., LiuQ.. Opt. Express, 2010, 18: 2621

[11]

GuoC., CaoS., JiangP., FangY., ZhangJ., FanY., WangY., XuW., ZhaoZ., LiuQ.. Opt. Express, 2009, 17: 19981

[12]

GuoC., ZhangZ., CaoS., LiuQ.. Opt. Lett., 2009, 34: 2820

[13]

KaveiG., SarrafiM. H., FalamakiC.. Meas. Sci. Technol., 2007, 18: 1441

[14]

LockwoodA. J., BobjiM. S., BunyanR. J. T., InksonB. J.. J. Phys. Conf. Ser., 2010, 241: 012056

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/