A new method to characterize the metallic-oxide films for grayscale lithography

Li-ping Sun, Shuang-gen Zhang, Zhe Wang, Jia-chun Deng, Jiang Lü

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 34-37.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 34-37. DOI: 10.1007/s11801-013-2351-9
Article

A new method to characterize the metallic-oxide films for grayscale lithography

Author information +
History +

Abstract

In order to characterize the metallic-oxide grayscale films fabricated by laser direct writing (LDW) in indium film, a new method with micro-Raman spectroscopy and atomic force microscope (AFM) is proposed. Raman spectra exhibit the characteristic band of In2O3 centered at 490 cm−1, in which the intensities increase with the decreasing optical density of the In-In2O3 grayscale films. The mapping information of Raman spectra shows that the signal intensities of the film in the same grayscale area are uniform. Combining with the information of In-In2O3 grayscale film from AFM, the quantitative relationship between the concentration of In2O3 and the Raman signal intensity is shown. Compared with the conventional methods, the resolution of micro-Raman scattering method is appropriate, and the scanning speed is proper to analyze the structure of metallic-oxide grayscale films.

Keywords

Atomic Force Microscope / Select Area Electron Diffraction / Raman Signal / Body Centered Cubic / Laser Direct Writing

Cite this article

Download citation ▾
Li-ping Sun, Shuang-gen Zhang, Zhe Wang, Jia-chun Deng, Jiang Lü. A new method to characterize the metallic-oxide films for grayscale lithography. Optoelectronics Letters, 2013, 9(1): 34‒37 https://doi.org/10.1007/s11801-013-2351-9

References

[1]
RogersJ. D., KärkkäinenA. H. O., TkaczykT., RantalaJ. T., DescourM. R.. Opt. Express, 2004, 12: 1294
CrossRef Google scholar
[2]
ChenY., ShenG., MengL., MaL., LiCh.. Journal of Optoelectronics Laser, 2011, 22: 1451
[3]
ChristophersenM., PhlipsB. F.. Appl. Phys. Lett., 2008, 92: 194102
CrossRef Google scholar
[4]
WaitsC. M., ModafeA., GhodssiR.. J. Micromech. Microeng., 2003, 13: 170
CrossRef Google scholar
[5]
ChenX., HanD., ZhangD., SunJ., GengX., ZhaoY.. Journal of Optoelectronics Laser, 2011, 22: 1022
[6]
ShigesatoY., TakakiS., HaranohT.. J. Appl. Phys., 1992, 71: 3356
CrossRef Google scholar
[7]
TamakiJ., NaruoC., YamamotoY., MastuokaM.. Sens. Actuators B, 2002, 83: 190
CrossRef Google scholar
[8]
ZhangD. H., LiC., HanS., LiuX. L., TangT., JinW., ZhouC. W.. Appl. Phys. Lett., 2003, 82: 112
CrossRef Google scholar
[9]
NguyenP., NgH. T., YamadaT., SmithM. K., LiJ., HanJ., MeyyappanM.. Nano. Lett., 2004, 4: 651
CrossRef Google scholar
[10]
GuoC., ZhangJ., MiaoJ., FanY., LiuQ.. Opt. Express, 2010, 18: 2621
CrossRef Google scholar
[11]
GuoC., CaoS., JiangP., FangY., ZhangJ., FanY., WangY., XuW., ZhaoZ., LiuQ.. Opt. Express, 2009, 17: 19981
CrossRef Google scholar
[12]
GuoC., ZhangZ., CaoS., LiuQ.. Opt. Lett., 2009, 34: 2820
CrossRef Google scholar
[13]
KaveiG., SarrafiM. H., FalamakiC.. Meas. Sci. Technol., 2007, 18: 1441
CrossRef Google scholar
[14]
LockwoodA. J., BobjiM. S., BunyanR. J. T., InksonB. J.. J. Phys. Conf. Ser., 2010, 241: 012056
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.11004152 and 11204213), the Program of Tianjin Municipal Education Commission (No.20090715), and the Tianjin Natural Science Foundation (No.12JCQNJC00800).

Accesses

Citations

Detail

Sections
Recommended

/