Design of strain-introduced MZI interleaver on LiNbO3 substrate

Yan-lin Zheng , Kai-xin Chen , Lu-wen Xie

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 4 -8.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 4 -8. DOI: 10.1007/s11801-013-2339-5
Article

Design of strain-introduced MZI interleaver on LiNbO3 substrate

Author information +
History +
PDF

Abstract

A strain-introduced Mach-Zehnder interferometer (MZI) interleaver on lithium niobate (LiNbO3) is proposed. The structure of the strain-introduced waveguide is designed in detail, and is produced by depositing a SiO2 film on the annealed proton-exchanged LiNbO3 waveguide. Considering the sensitivities of the edge strain to the deposition temperature and the thickness of the SiO2 film, an optimum design of 50 GHz interleaver on this structure is given through analyzing the effective index changes for Epqx mode by finite difference method (FDM). The length of the bending waveguide in this interleaver is just two thirds of that in the conventional interleaver due to the high refractive index difference.

Keywords

Lithium Niobate / Effective Index / Refractive Index Change / Maximum Refractive Index / Planar Lightwave Circuit

Cite this article

Download citation ▾
Yan-lin Zheng, Kai-xin Chen, Lu-wen Xie. Design of strain-introduced MZI interleaver on LiNbO3 substrate. Optoelectronics Letters, 2013, 9(1): 4-8 DOI:10.1007/s11801-013-2339-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ShineB., BautistaJ.. J. Lightwave Technol., 2000, 8: 140

[2]

ZhangB.-g., TaoC.-x., LuY.. Journal of Optoelectronics Laser, 2010, 21: 1641

[3]

H. P. Chan, Q. Wu, K. X. Chen, W. Y. Chan and B. P. Pal, International Photonics Global Conference (IPGC), Singapore, 2008.

[4]

JingujiK., OgumaM.. J. Lightwave Technol., 2000, 18: 252

[5]

LuoL.-W., IbrahimS., NitkowskiA., DingZ., PoitrasC. B., YooS. J. B., LipsonM.. Opt. Express, 2010, 18: 23079

[6]

ChenK. X., ChanH. P., ChenF. S., ChanW. Y.. IEEE Photonics Technol. Lett., 2011, 23: 1157

[7]

Tzyy-JiannW., Cha-HongC.. IEEE Photonics Technol. Lett., 2007, 19: 1904

[8]

Tzyy-JiannW., Cha-HongC., Che-YungL.. Opt. Lett., 2007, 32: 2777

[9]

BudaM., IordacheG., AcketG. A., van der RoerT. G., KaufmannL. M. F., van RoyB. H., SmallbruggeE., MoermanI., SysC.. IEEE J. Quantum Electron., 2000, 36: 1174

[10]

EknoyanO., TaylorH. F., TangZ., SwensonV. P., MarxJ. M.. Appl. Phys., 1992, 60: 27

[11]

TangD. L., ZhangX. D., ZhaoG. H., DaiZ. Y., LaiX., GuoF.. J. Zhejiang University-Science, 2009, 10: 595

[12]

LiuM., KimH. K.. Appl. Phys., 2001, 79: 2693

[13]

R. M. de Ridder and C. G. H. Roeloffzen, Interleavers in Wavelength Filter for Fiber Optics, Springer Series in Optical Sciences, 381 (2006).

[14]

WilliamJ. M., StevenK. K., RodC. A.. IEEE J. Quantum Electron., 1982, 18: 1802

[15]

W. J. Tropf, T. J. Harris and M. E. Thomas, Optical Materials: Visible and Infrared, in Electro-Optics Handbook, McGraw-Hill Press, 377 (2000).

[16]

KirkbyP. A., SelwayP. R., WestbrookL. D.. Appl. Phys., 1979, 50: 4567

[17]

WeisR. S., GaylordT. K.. Appl. Phys., 1985, 37: 191

[18]

LeaE., WeissB. L.. IEE Proc.-Optoelectron., 2000, 147: 2

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/