Highly birefringent photonic crystal fibers with flattened dispersion and low confinement loss

Ye Cao, Rong-min Li, Zheng-rong Tong

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 45-48.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 45-48. DOI: 10.1007/s11801-013-2336-8
Article

Highly birefringent photonic crystal fibers with flattened dispersion and low confinement loss

Author information +
History +

Abstract

A highly birefringent index-guiding photonic crystal fiber (PCF) with flattened dispersion and low confinement loss is proposed by introducing two small air holes with the same diameter in the core area. The fundamental mode field, birefringence, confinement loss, effective mode area and dispersion characteristic of the fibers are studied by the full-vector finite element method (FEM). Simulation results show that a high birefringence with the order of 10−3 and a low confinement loss of 0.001 dB/km are obtained at 1550 nm. Furthermore, flattened chromatic dispersion from 1450 nm to 1590 nm is obtained.

Keywords

Photonic Crystal Fiber / Chromatic Dispersion / IEEE Photonic Technology Letter / High Birefringence / Total Dispersion

Cite this article

Download citation ▾
Ye Cao, Rong-min Li, Zheng-rong Tong. Highly birefringent photonic crystal fibers with flattened dispersion and low confinement loss. Optoelectronics Letters, 2013, 9(1): 45‒48 https://doi.org/10.1007/s11801-013-2336-8

References

[1]
KnightJ. C., BriksT. A., RussellP. St. J., AtkinD. M.. Optics Letters, 1996, 21: 1549
[2]
BirksT. A., KnightJ. C., RussellP. St. J.. Optics Letters, 1997, 22: 961
CrossRef Google scholar
[3]
BriksT. A., MoginlevtsevD., KnightJ. C., RussellP. St. J.. IEEE Photonics Technology Letters, 1999, 11: 676
[4]
WadsworthW. J., KnightJ. C., Ortigosa-BlanchA., ArriagaJ., SilvestreE., RussellP. St. J.. Electronics Letters, 2000, 36: 53
CrossRef Google scholar
[5]
FerrandoA., SilvestreE., MiretJ. J., AndresP.. Optics Letters, 2000, 25: 790
CrossRef Google scholar
[6]
HanT.-t., LiuY.-g., WangZ.. Journal of Optoelectronics · Laser, 2012, 23: 215
[7]
FsaifesI., CordetteS., TonelloA., CoudercV., LepersC., WareC., LeprouxP., Buy-LesvigneC.. IEEE Photonics Technology Letters, 2010, 22: 1367
CrossRef Google scholar
[8]
YuX.-y., ZhouY.-x., XuY.-s., WangX., ZhangP.-q., TaoG.-m., DaiS.-x.. Journal of Optoelectronics · Laser, 2012, 23: 915
[9]
ZhangS.-s., ZhangW.-g., LiuZ.-l., LiX.-l.. Journal of Optoelectronics · Laser, 2011, 22: 685
[10]
Delgado-PinarM., DiezA., Torres-PeiroS., AndresM. V., Pinheiro-OrtegaT., SilvestreE.. Optics Express, 2009, 17: 6931
CrossRef Google scholar
[11]
WuZ., YangD. X., WangL., RaoL., ZhangL., ChenK., HeW. J., LiuS.. Optics Laser Technology, 2010, 42: 387
CrossRef Google scholar
[12]
HuD. J. J., ShumP. P., LuC., RenG.. Optics Communications, 2009, 282: 4072
CrossRef Google scholar
[13]
SaitohK., FlorousN., KoshibaM.. Optics Express, 2005, 13: 8365
CrossRef Google scholar
[14]
AdemgilH., HaxhaS., MalekF. A.. Engineering, 2010, 2: 608
CrossRef Google scholar
[15]
LiangJ., YunM., KongW., SunX., ZhangW., XiS.. Optik, 2011, 122: 2151
CrossRef Google scholar
[16]
ObayyaS. S. A., RahmanB. M. A., GrattanK. T. V.. Optoeletronics, 2005, 152: 241
CrossRef Google scholar
[17]
JuJ., JinW., DemokanM. S.. IEEE Photonics Technology Letters, 2003, 15: 1375
CrossRef Google scholar
[18]
HaxhaS., AdemgilH.. Optical Communcation, 2008, 281: 278
CrossRef Google scholar
[19]
FerrandoA., SilvestreE., MiretJ. J., AndresP.. Optical Express, 2001, 9: 687
CrossRef Google scholar
[20]
MishraS. S., SinghV. K.. Optik, 2011, 122: 1975
CrossRef Google scholar
[21]
RuC. D., ZhuW. G.. Applied Optics, 2010, 49: 1682
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No. 61107052).

Accesses

Citations

Detail

Sections
Recommended

/