A novel concatenated code based on the improved SCG-LDPC code for optical transmission systems

Jian-guo Yuan , Ya Xie , Lin Wang , Sheng Huang , Yong Wang

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 42 -44.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 42 -44. DOI: 10.1007/s11801-013-2335-9
Article

A novel concatenated code based on the improved SCG-LDPC code for optical transmission systems

Author information +
History +
PDF

Abstract

Based on the optimization and improvement for the construction method of systematically constructed Gallager (SCG) (4, k) code, a novel SCG low density parity check (SCG-LDPC)(3969, 3720) code to be suitable for optical transmission systems is constructed. The novel SCG-LDPC (6561,6240) code with code rate of 95.1% is constructed by increasing the length of SCG-LDPC (3969,3720) code, and in a way, the code rate of LDPC codes can better meet the high requirements of optical transmission systems. And then the novel concatenated code is constructed by concatenating SCG-LDPC(6561,6240) code and BCH(127,120) code with code rate of 94.5%. The simulation results and analyses show that the net coding gain (NCG) of BCH(127,120)+SCG-LDPC(6561,6240) concatenated code is respectively 2.28 dB and 0.48 dB more than those of the classic RS(255,239) code and SCG-LDPC(6561,6240) code at the bit error rate (BER) of 10−7.

Keywords

Code Rate / Forward Error Correction / Parity Check Matrix / Codeword Length / Forward Error Correction Code

Cite this article

Download citation ▾
Jian-guo Yuan, Ya Xie, Lin Wang, Sheng Huang, Yong Wang. A novel concatenated code based on the improved SCG-LDPC code for optical transmission systems. Optoelectronics Letters, 2013, 9(1): 42-44 DOI:10.1007/s11801-013-2335-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YuanJ.-g., WangW., LiangT.-y., WangY.. Journal of Optoelectronics Laser, 2012, 23: 1304

[2]

YuanJ., YeW.. Optik, 2009, 120: 758

[3]

DjordjevicI. B., XuL., WangT.. IEEE Photonics Journal, 2010, 2: 1034

[4]

YuanJ.-g., WangW., LiangT.-y.. Journal of Optoelectronics Laser, 2012, 23: 906

[5]

YuanJ.-g., YeW.-w., MaoY.-j.. Journal of Optoelectronics Laser, 2009, 20: 1450

[6]

YangZ., YangZ., XiaoD.. Journal of China Institute of Communications, 2004, 25: 82

[7]

MagariniM., EssiambreR. J., BaschB. E., AshikhminA., KramerG., de Lind van WijngaardenA. J.. IEEE Photonics Technology Letters, 2010, 22: 1244

[8]

ChanceZ., LoveD. J.. IEEE Transactions on Information Theory, 2011, 57: 6633

[9]

ButtM. F. U., RiazR. A., NgS. X., HanzoL.. IEEE Transactions on Vehicular Technology, 2010, 59: 3097

[10]

SangW. K.. IEEE Transactions on Communications, 2010, 58: 3305

[11]

ITU-T G.975.1. Forward Error Correction for High Bit Rate DWDM Submarine Systems, 2003.

[12]

HösliD., SvenssonE.. Low-density Parity-check Codes for Magnetic Recording, 2000, Zurich Switzerland, Swiss Federal Institute of Technology Zurich

[13]

GallagerR. G.. IEEE Transactions on Information Theory, 1962, 8: 21

[14]

ForneyG. D.. Concatenated Codes, 1966, Cambridge, MIT Press

[15]

ITU-T G.975, Forward Error Correction for Submarine Systems, 1996.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/