Ce3+-Gd3+ co-doped high efficiency oxide glasses and transfer efficiency from Gd3+ to Ce3+

Bin Yang, Yue-pin Zhang, Bo Xu, Hai-ping Xia

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 30-33.

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 30-33. DOI: 10.1007/s11801-013-2332-z
Article

Ce3+-Gd3+ co-doped high efficiency oxide glasses and transfer efficiency from Gd3+ to Ce3+

Author information +
History +

Abstract

The rare earth Ce3+ ion doped SiO2-B2O3-BaO-Gd2O3 system is synthesized by high-temperature melting method. The density, transmission, excitation spectra and scintillating properties of the glasses are investigated. The results indicate that all the samples have good physical and scintillating properties. The emission peak wavelength of all samples is 390 nm under X-ray radiation. Gd3+ ions have a negative impact on scintillating properties when its concentration reaches a certain level. Gd3+ ions sensitize the luminescence of Ce3+ ions, and the ideal concentration is 15 mol% for Gd3+ ions. Also the decay characteristics of Ce3+ and Gd3+ ions are investigated. These samples have potential practical applications in high energy physics.

Keywords

High Energy Physic / Efficiency Energy Transfer / Cross Relaxation / Radiation Length / Crystal Scintillator

Cite this article

Download citation ▾
Bin Yang, Yue-pin Zhang, Bo Xu, Hai-ping Xia. Ce3+-Gd3+ co-doped high efficiency oxide glasses and transfer efficiency from Gd3+ to Ce3+. Optoelectronics Letters, 2013, 9(1): 30‒33 https://doi.org/10.1007/s11801-013-2332-z

References

[1]
WangY. C., XiaH. P., ZhangJ. L., ZhangQ. Y.. Journal of Optoelectronics · Laser, 2011, 22: 232
[2]
ZhouY. X., WangD. G., YangG. B., ChenF.. Journal of Optoelectronics · Laser, 2010, 21: 1031
[3]
ZhaoF. G., WangG. N., HuL. L.. Bull. Chin. Ceram. Soc., 2006, 25: 123
[4]
CaoD. H., LiY. J., ZhaoG. J., ChenJ. Y., DongQ., DingY. T.. Act. Opti. Sin., 2009, 29: 3463
CrossRef Google scholar
[5]
NiklM., NitschK., MihokovaE., SolovievaN., MqresJ. A., FabeniP., PazziG. P., MartiniM., VeddaA., BaccaroS.. Appl. Phys. Lett., 2000, 77: 2159
CrossRef Google scholar
[6]
YangB., ZhangY. P., XuB., XiaH. P., ZhaoT. C.. Acta Physica Sinica, 2012, 61: 192901-1
[7]
DuttaD. P., JayakumarO. D., AryaA., TyagiA. K.. J. Nanosci. Nanotechno., 2011, 11: 4981
CrossRef Google scholar
[8]
HeX. M., ChenD. P., YuB. K., RenG. H., YanX. N.. Acta Optica Sinica, 2011, 31: 0516001-1
CrossRef Google scholar
[9]
JiangC., ZhangJ. Z., GanF. X.. J. Solid State Chem., 1999, 144: 449
CrossRef Google scholar
[10]
FuJ., ParkerJ. M., BrownR. M., FlowerP. S.. J. Non. Crys. Solid, 2003, 326&327: 335
CrossRef Google scholar
[11]
BeiJ. F., QianG. J., LiangX. L., YuanS. L., YangY. X., ChenG. R.. Mater. Res. Bull., 2007, 42: 1195
CrossRef Google scholar
[12]
InokutiM., HirayamaF.. J. Chem. Phys., 1965, 43: 1978
CrossRef Google scholar
[13]
JiaoH., LiaoF. H., TianS. J., JingX. P.. J. Electrochem. Soc., 2003, 150: H220
[14]
FuJ., MassaakiK., ParkerJ. M.. J. Lumin., 2008, 128: 99
CrossRef Google scholar
[15]
LaiF., ZhangY. P., WangH. P. X. J. H., JiangC.. Optical Technique, 2009, 35: 766

This work has been supported by the National Natural Science Foundation of China (Nos. 61275180, 50972061 and 51272109), and the Natural Science Foundation of Zhejiang Province in China (Nos.Z4110072 and R4100364).

Accesses

Citations

Detail

Sections
Recommended

/