Ce3+-Gd3+ co-doped high efficiency oxide glasses and transfer efficiency from Gd3+ to Ce3+

Bin Yang , Yue-pin Zhang , Bo Xu , Hai-ping Xia

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 30 -33.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 30 -33. DOI: 10.1007/s11801-013-2332-z
Article

Ce3+-Gd3+ co-doped high efficiency oxide glasses and transfer efficiency from Gd3+ to Ce3+

Author information +
History +
PDF

Abstract

The rare earth Ce3+ ion doped SiO2-B2O3-BaO-Gd2O3 system is synthesized by high-temperature melting method. The density, transmission, excitation spectra and scintillating properties of the glasses are investigated. The results indicate that all the samples have good physical and scintillating properties. The emission peak wavelength of all samples is 390 nm under X-ray radiation. Gd3+ ions have a negative impact on scintillating properties when its concentration reaches a certain level. Gd3+ ions sensitize the luminescence of Ce3+ ions, and the ideal concentration is 15 mol% for Gd3+ ions. Also the decay characteristics of Ce3+ and Gd3+ ions are investigated. These samples have potential practical applications in high energy physics.

Keywords

High Energy Physic / Efficiency Energy Transfer / Cross Relaxation / Radiation Length / Crystal Scintillator

Cite this article

Download citation ▾
Bin Yang, Yue-pin Zhang, Bo Xu, Hai-ping Xia. Ce3+-Gd3+ co-doped high efficiency oxide glasses and transfer efficiency from Gd3+ to Ce3+. Optoelectronics Letters, 2013, 9(1): 30-33 DOI:10.1007/s11801-013-2332-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangY. C., XiaH. P., ZhangJ. L., ZhangQ. Y.. Journal of Optoelectronics · Laser, 2011, 22: 232

[2]

ZhouY. X., WangD. G., YangG. B., ChenF.. Journal of Optoelectronics · Laser, 2010, 21: 1031

[3]

ZhaoF. G., WangG. N., HuL. L.. Bull. Chin. Ceram. Soc., 2006, 25: 123

[4]

CaoD. H., LiY. J., ZhaoG. J., ChenJ. Y., DongQ., DingY. T.. Act. Opti. Sin., 2009, 29: 3463

[5]

NiklM., NitschK., MihokovaE., SolovievaN., MqresJ. A., FabeniP., PazziG. P., MartiniM., VeddaA., BaccaroS.. Appl. Phys. Lett., 2000, 77: 2159

[6]

YangB., ZhangY. P., XuB., XiaH. P., ZhaoT. C.. Acta Physica Sinica, 2012, 61: 192901-1

[7]

DuttaD. P., JayakumarO. D., AryaA., TyagiA. K.. J. Nanosci. Nanotechno., 2011, 11: 4981

[8]

HeX. M., ChenD. P., YuB. K., RenG. H., YanX. N.. Acta Optica Sinica, 2011, 31: 0516001-1

[9]

JiangC., ZhangJ. Z., GanF. X.. J. Solid State Chem., 1999, 144: 449

[10]

FuJ., ParkerJ. M., BrownR. M., FlowerP. S.. J. Non. Crys. Solid, 2003, 326&327: 335

[11]

BeiJ. F., QianG. J., LiangX. L., YuanS. L., YangY. X., ChenG. R.. Mater. Res. Bull., 2007, 42: 1195

[12]

InokutiM., HirayamaF.. J. Chem. Phys., 1965, 43: 1978

[13]

JiaoH., LiaoF. H., TianS. J., JingX. P.. J. Electrochem. Soc., 2003, 150: H220

[14]

FuJ., MassaakiK., ParkerJ. M.. J. Lumin., 2008, 128: 99

[15]

LaiF., ZhangY. P., WangH. P. X. J. H., JiangC.. Optical Technique, 2009, 35: 766

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/