Optimal quantum well width and the effect of quantum well position on the performance of transistor lasers

Md. Ahsan Habib , Subrata Das , Saeed Mahmud Ullah , Shahida Rafique

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 18 -20.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 18 -20. DOI: 10.1007/s11801-013-2313-2
Article

Optimal quantum well width and the effect of quantum well position on the performance of transistor lasers

Author information +
History +
PDF

Abstract

Transistor laser (TL) model based on InGaP/GaAs/InGaAs/GaAs is analyzed and presented. It is realized that quantum well (QW) with width of 10 nm may be formed for low base threshold current density Jth. The emission wavelength is found to be 1.05 μm, and the indium (In) composition is 0.25 for optimal QW width. It is identified that Jth decreases with the movement of QW towards the base-emitter (B-E) interface. Small signal optical response is calculated, and the effect of QW position is studied. The bandwidth is enhanced due to the movement of the QW towards the emitter base junction.

Keywords

GaAs / Quantum Well / Base Region / Threshold Current Density / Differential Gain

Cite this article

Download citation ▾
Md. Ahsan Habib, Subrata Das, Saeed Mahmud Ullah, Shahida Rafique. Optimal quantum well width and the effect of quantum well position on the performance of transistor lasers. Optoelectronics Letters, 2013, 9(1): 18-20 DOI:10.1007/s11801-013-2313-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HolonyakN., FengM.. IEEE Spect., 2006, 43: 50

[2]

TanF., BamberyR., FangM., HolonyakN.. Appl. Phys. Lett., 2011, 99: 061105

[3]

FengM., HolonyakN.Jr., JamesA.. Appl. Phys. Lett., 2011, 98: 051107

[4]

DixonF. P., FengM., HolonyakN.Jr.. Appl. Phys. Lett., 2010, 96: 241103

[5]

FengM., HolonyakN.Jr., ThenH. W., WalterG.. Appl. Phys. Lett., 2007, 91: 053501

[6]

FengM., HolonyakN.Jr.. Opt. Photonics News, 2011, 22: 44

[7]

ZhangL., LeburtonJ. P.. IEEE J. Quan. Electron., 2009, 45: 359

[8]

FarajiB., PulfreyD. L., ChrostowskiL.. IEEE J. Selected Topics in Quan. Electron., 2009, 15: 594

[9]

M. Shirao, N. Nishiyama, S. Lee and S. Arai, Large Signal Analysis of AlGalnAs/InP Laser Transistor, Conference of Lasers and Electro-Optics (CLEO), San Jose, CMY7 (2010).

[10]

FengM., BamberyR., HolonyakN.Jr. Appl. Phys. Lett., 2011, 98: 123505

[11]

IversonE. W., FengM.. IEEE Photon. Technol. Lett., 2012, 24: 4

[12]

FengM., HolonyakN.Jr., WalterG., ChanR.. Appl. Phys. Lett., 2005, 87: 131103

[13]

BhattacharyaP.. Semiconductor Optoelectronic Devices, 2005, 2nd ed.New Delhi, Prentice-Hall of India Pvt. Ltd.

[14]

ParkS., JeongW., KimH., KiI., ChoeB.. Jpn. J. Appl. Phys., 1993, 32: 5584

[15]

ZouW. X., MerzJ. L., ColdrenL. A.. J. Appl. Phys., 1992, 72: 5047

[16]

MatthewsJ. W., BlakesleeA. E.. J. Crystal Growth, 1974, 27: 118

[17]

J. J. Coleman, Strained Layer Quantum Well Heterostructure Lasers, in Quantum Well Lasers, Academic Press, 374 (1993).

[18]

ColdrenL. A., CorzineS. W.. Diode Lasers and Photonic Integrated Circuits, 1995, New York, Wiley

[19]

ThenH. W., FengM., HolonyakN.Jr., WuC. H.. Appl. Phys. Lett., 2007, 91: 033505

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/