Synthesis of silver nanoparticles and the optical properties

Ai-ling Yang , Zhen-zhen Zhang , Yun Yang , Xi-chang Bao , Ren-qiang Yang

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 1 -3.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 1 -3. DOI: 10.1007/s11801-013-2310-5
Article

Synthesis of silver nanoparticles and the optical properties

Author information +
History +
PDF

Abstract

Silver nanoparticles (NPs) of 5–15 nm are synthesized with the reduction of silver nitrate (AgNO3) by formaldehyde (HCHO) and using polyethylenemine (PEI) as a stabilizer. Transmission electron microscopy (TEM) analysis shows the size of the Ag NPs increases with the increase of HCHO contents. The absorption and emission peaks of the original colloids are red shifted with increasing the size of Ag NPs. The absorption and emission peaks are at 344 nm, 349 nm, 357 nm, 362 nm, 364 nm and 444 nm, 458 nm, 519 nm, 534 nm, 550 nm, respectively. The fluorescence intensities of the silver colloids increase with increasing the NPs size (or the contents of HCHO). With the diluted fold increasing, the fluorescence intensity of the diluted silver colloids increases firstly then decreases. Compared with that of the original silver colloids, the emission peaks are blue shifted. For the diluted silver colloids, when the fluorescence intensity is maximum, the emission peaks are all near 444 nm. The 16-fold diluted silver colloid gets to the maximum emission intensity when the mole ratio of AgNO3 and HCHO is 1:6.

Keywords

Silver Nanoparticles / Emission Peak / HCHO / Silver Colloid / Intensity Emission Peak

Cite this article

Download citation ▾
Ai-ling Yang, Zhen-zhen Zhang, Yun Yang, Xi-chang Bao, Ren-qiang Yang. Synthesis of silver nanoparticles and the optical properties. Optoelectronics Letters, 2013, 9(1): 1-3 DOI:10.1007/s11801-013-2310-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PrashantV. K.. Photophysical, Phys. Chem. B, 2002, 106: 7729

[2]

ChungS. W., YuY., HeathJ. R.. Applied Physics Letters, 2000, 76: 2068

[3]

LiuG.-x., JinX., ZhaoJ.-j., HanJ., LuY.. Journal of Optoelectronics Laser, 2011, 22: 392

[4]

LeeT. H., DicksonR. M.. Phys. Chem. B, 2003, 107: 7387

[5]

SchwartzbergA. M., OlsonT. Y., TalleyC. E., ZhangJ. Z.. Phys. Chem. B, 2006, 110: 19935

[6]

FerryV. E., SweatlockL. A., PacificiD., AtwaterH. A.. Nano Lett., 2008, 8: 4391

[7]

LiuY., ZhangC.-l., ChenP., LinL., MuG.-g.. Journal of Optoelectronics Laser, 2012, 23: 379

[8]

DongJ., LtX.-q., LiJ., ZhengH.-r.. Journal of Optoelectronics Laser, 2012, 23: 1126

[9]

YoshidaA., KometaniN., YonezawaY.. Colloids and Surfaces A: Physicochem. Eng. Asepects, 2008, 313: 581

[10]

SaraidarovT., LevchenkoV., ReisfeldR.. Phys. Status Solidi. C, 2010, 11: 2648

[11]

YakutikI. M., ShevchenkoG. P.. Surf. Sci., 2004, 566: 414

[12]

BernaboM., PucciA., GalembeckF., de Paula LeiteC. A., RuggeriG.. Mater. Eng., 2009, 294: 256

[13]

YuD., YamV. W.. Phys. Chem. B., 2005, 109: 5497

[14]

LeiZ., ZhangL., WeiX.. Colloid Interface Sci., 2008, 324: 216

[15]

JinR. C., CaoY. W., MirkinC. A., KellyK. L., SchatzG. C., ZhengJ. G.. Sci., 2001, 294: 1901

[16]

TanS., ErolM., AttygalleA., DuH., SukhishviliS.. Langmuri, 2007, 23: 9836

[17]

MallickK., WitcombM. J., ScurrellM. S.. Materials Sci. and Eng. C, 2006, 26: 87

[18]

HsuY., ChenY., LinW., LanY., ChanY., LinJ.. Colloid Interface. Sci., 2010, 352: 81

[19]

GuY., MaH., O’HalloranK. P., ShiaS., ZhangZ., WangX.. Electrochimica Acta, 2009, 54: 7194

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/