Numerical simulation of the thermal response of continuous-wave terahertz irradiated skin

De-gang Xu , Chang-ming Liu , Yu-ye Wang , Wei-peng Wang , Hao Jiang , Zhuo Zhang , Peng-xiang Liu , Jian-quan Yao

Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 73 -76.

PDF
Optoelectronics Letters ›› 2013, Vol. 9 ›› Issue (1) : 73 -76. DOI: 10.1007/s11801-013-2303-4
Article

Numerical simulation of the thermal response of continuous-wave terahertz irradiated skin

Author information +
History +
PDF

Abstract

We report a two-layer model to describe the thermal response of continuous-wave (CW) terahertz (THz) irradiated skin. Based on the Pennes bio-heat conduction equation, the finite element method (FEM) is utilized to calculate the temperature distribution. The THz wave with a Gaussian beam profile is used to simulate the photo-thermal mechanism. The simulation results show the dynamic process of temperature increasing with irradiation time and possible thermal damage. The factors which can affect temperature distribution, such as beam radius, incident power and THz frequency, are investigated. With a beam radius of 0.5 mm, the highest temperature increase is 3.7 K/mW.

Keywords

Thermal Damage / Skin Depth / Incident Power / Beam Radius / Dermis Layer

Cite this article

Download citation ▾
De-gang Xu, Chang-ming Liu, Yu-ye Wang, Wei-peng Wang, Hao Jiang, Zhuo Zhang, Peng-xiang Liu, Jian-quan Yao. Numerical simulation of the thermal response of continuous-wave terahertz irradiated skin. Optoelectronics Letters, 2013, 9(1): 73-76 DOI:10.1007/s11801-013-2303-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FedericiJ. F., SchulkinB., HuangF., GaryD., BaratR., OlivheiraF., ZimdarsD.. Semicondutor Science and Tech nology, 2005, 20: S266

[2]

E. Pickwell, A. J Fitzgerald, P. F. Taday, B. E. Cole, R. J. Pye, T. Ha, M. Pepper and V. P. Wallace, 29th Int. Conf. Infrared, Millimeter, and Terahertz Waves, 821 (2004).

[3]

KawaseK., OgawaY., WatanabeY.. Optics Express, 2003, 11: 2549

[4]

ChenT., HuM., LiangJ.-r., HouJ.-b., Z., LiL.. Journal of Optoelectronics · Laser, 2011, 22: 1348

[5]

ZhangY.-p., LiuL.-y., ZhangX., ZhangH., ZhangH.-y.. Journal of Optoelectronics · Laser, 2012, 23: 832

[6]

WangY. Y., MinamideH., TangM., NotakeT., ItoH.. Optics Express, 2010, 18: 15504

[7]

BondarN. P., KovalenkoI. L., AvgustinovichD. F., KhamoyanA. G., KudryavtsevaN. N.. Bulletin of Experimental Biology and Medicine, 2008, 145: 401

[8]

AlexandrovB. S., GelevV., BishopA. R., UshevaA., RasmussenK. Ø.. Physics Letters A, 2010, 374: 1214

[9]

J. S. Olshevskaya, A. S. Ratushnyak, A. K. Petrov, A. S. Kozlov and T. A. Zapara, IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, 210 (2008).

[10]

G. P. Gallerano, E. Grosse, R. Korenstein, M. Dressel, W. Mantele, M. R. Scarfi, A. C. Cefalas, P. Taday, R. H. Clothier and P. Jepsen, Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics F7.1, 817 (2004).

[11]

DalzellD. R., McQuadeJ., VinceletteR., IbeyB., PayneJ., ThomasR., RoachW. P., RothC. L., WilminkJ.. Proc. SPIE, 2010, 7562: 75620M

[12]

PennesH. H.. Journal of Applied Physiology, 1948, 1: 93

[13]

HanP. Y., ChoG. C., ZhangX. C.. Optics Letters, 2000, 25: 242

[14]

BerryE., FitzgeraldA. J., Zinov’evN. N., WalkerG. C., Homer-VanniasinkamS., SudworthC. D., MilesR. E., ChamberlainJ. M., SmithM. A.. Proc. SPIE, 2003, 5030: 459

[15]

WelchA. J.. IEEE J. Quantum Electron., 1984, 20: 1471

[16]

TuchinV. V., ScherbakovY. N., YakuminA. N., YaroslavskyI. V.. SPIE, 1995, PM25: 100

[17]

WallaceV. P., FitzgeraldA. J., PickwellE., PyeR. J., TadayP. F., FlanaganN., HaT.. Applied Spectroscopy, 2006, 20: 1127

[18]

HenriquesF. C., MoritzA. R.. Arch. Pathol., 1947, 43: 489C502

[19]

TakataA. N.. Aerospace Med., 1974, 45: 634

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/