Spectral spatial coherence of high-power multi-chip LEDs

Guang-ming Chen , Hua Tao , Hui-chuan Lin , Zi-yang Chen , Ji-xiong Pu

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (6) : 422 -425.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (6) : 422 -425. DOI: 10.1007/s11801-012-2322-6
Article

Spectral spatial coherence of high-power multi-chip LEDs

Author information +
History +
PDF

Abstract

We investigate the spatial coherence of the light generated from high-power multi-chip red LEDs by using the van Cittert-Zernike theorem. It is theoretically demonstrated that the light generated from multi-chip LEDs evolves into partially coherent light after propagation, and the spatial coherence is increased with the increase of propagation distance. Moreover, the spatial coherence of the light is found to be closely related to the chip distribution of multi-chip LEDs. The distribution of the spatial coherence of the light is experimentally examined by Young’s double-slit interference. It is found that the experimental results are consistent with the theoretical ones.

Keywords

Propagation Distance / Interference Fringe / Spatial Coherence / Coherent Light / Fringe Visibility

Cite this article

Download citation ▾
Guang-ming Chen, Hua Tao, Hui-chuan Lin, Zi-yang Chen, Ji-xiong Pu. Spectral spatial coherence of high-power multi-chip LEDs. Optoelectronics Letters, 2012, 8(6): 422-425 DOI:10.1007/s11801-012-2322-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SchubertE. F.. Light-Emitting Diodes, 2003, UK, Cambridge Univ. Press

[2]

SteigerwaldD. A., BhatJ. C., CollinsD., FletcherR. M., HolcombM. O., LudowiseM. J., MartinP. S., RudazS. L.. IEEE J. Sel. Top. Quantum Electron, 2002, 8: 310

[3]

J. Kim, S. Somani and Y. Yamamoto, Nonclassical Light from Semiconductor Lasers and LEDs, Spinger, 2001.

[4]

NakamuraS., MukaiT., SenohM.. Appl. Phys. Lett., 1994, 64: 1687

[5]

CrafordM. G., HolonyakN., KishF. A.. Sci. Am., 2001, 284: 63

[6]

NarukawaY.. Opt. Photonics News, 2004, 15: 24

[7]

BerghA., CrafordG., DuggalA., HaizR.. Phys. Today, 2001, 54: 42

[8]

MorenoI., SunC.-C., IvanovR.. Appl. Opt., 2009, 48: 1190

[9]

GuoZ., GaoY., LuY., LinY., ChenH., LeiR., ChenY., ChenZ.. Journal of Optoelectronics Laser, 2011, 22: 992

[10]

PeetersM., VerschaffeltG., TheinpontH., MandreS. K., FischerI., GrabherrM.. Opt. Express, 2005, 13: 9337

[11]

PeetersM., VerschaffeltG., SpeybrouckJ., TheinpontH., DanckaertJ., TurunenJ., VahimaaP.. Opt. Lett., 2006, 31: 1178

[12]

DuarteF. J., LiaoL. S., VaethK. M.. Opt. Lett., 2005, 30: 3072

[13]

DuarteF. J.. Opt. Lett., 2007, 32: 412

[14]

MehtaD. S., SaxenaK., DubeyS. K., ShakherC.. Journal of Luminescence, 2010, 130: 96

[15]

BornM., WolfE.. Principles of Optics, 1999, UK, Cambridge Univ. Press

[16]

MengZ., LiangY., YaoX.-t., YaoH., LiuT.-g., WanM.-s.. Journal of Optoelectronics Laser, 2011, 22: 256

[17]

ChenZ., HuaL., PuJ.. Prog. Opt., 2012, 57: 219

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/