Broadband near-infrared luminescence and energy transfer in Bi singly-doped and Bi/Yb co-doped titanate glasses

Han Tang , Hai-ping Xia

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (6) : 456 -459.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (6) : 456 -459. DOI: 10.1007/s11801-012-2315-5
Article

Broadband near-infrared luminescence and energy transfer in Bi singly-doped and Bi/Yb co-doped titanate glasses

Author information +
History +
PDF

Abstract

Super-broadband near-infrared (NIR) emission from 1100 nm to 1600 nm is observed in Bi-doped titanate glasses at the excitation of 808 nm laser diode (LD). The effects of Bi content on the optical spectra are investigated. It is also found that the Bi-related emission intensity can be enhanced by Yb3+ co-doping at the excitation of 980 nm LD. It should be ascribed to the energy transfer from Yb3+ to active Bi ions. The energy transfer processes are studied based on the Inokuti-Hirayama (I-H) model, and the energy transfer of electric dipole-dipole interaction is confirmed to be dominant in Bi/Yb co-doped glasses.

Keywords

Energy Transfer Process / Germanate Glass / Titanate Glass / Dope Silicate Glass

Cite this article

Download citation ▾
Han Tang, Hai-ping Xia. Broadband near-infrared luminescence and energy transfer in Bi singly-doped and Bi/Yb co-doped titanate glasses. Optoelectronics Letters, 2012, 8(6): 456-459 DOI:10.1007/s11801-012-2315-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HughesM., SuzukiT., OhishiY.. J. Opt. Soc. Am. B, 2008, 25: 1380

[2]

ZhaoH.-l., XiaH.-p.. Journal of Optoelectronics Laser, 2012, 23: 106

[3]

ZhaoH.-l., XiaH.-p.. Journal of Optoelectronics Laser, 2012, 23: 106

[4]

FujimotoY., NakatsukaM.. Jpn. J. App. Phys., 2001, 40: 279

[5]

PengM., QiuJ., ChenD., MengX., ZhuC.. Opt. Express, 2005, 13: 6892

[6]

PengM., QiuJ., ChenD., MengX., YangI., JiangX., ZhuC.. Opt. Lett., 2004, 29: 1998

[7]

MengX., QiuJ., PengM., ChenD., ZhaoQ., JiangX., ZhuC.. Opt. Express, 2005, 13: 1628

[8]

RazdobreevI., BigotL.. Opt. Mater., 2011, 33: 973

[9]

PengM., MengX., QiuJ., ZhaoQ., ZhuC.. Chem. Phys. Lett., 2005, 40: 410

[10]

DianovE. M., DvoyrinV. V., MashinskyV. M., UmnikovA. A., YashkovM. V., GuryanovA. N.. Quantum Electron, 2005, 35: 1083

[11]

DvoyrinV. V., MedvedkovQ. I., MashinskyV. M., UmnikovA. A., GuryanovA. N., DianovE. M.. Opt. Express, 2008, 16: 16971

[12]

DvoyrinV. V., MashinskyV. M., DianovE. M.. Opt. Lett., 2007, 32: 451

[13]

RuanJ., WuE., ZengH., ZhouS., LakshminarayanaG., QiuJ., YangL., LiJ.. Appl. Phys. Lett., 2008, 92: 101121

[14]

QiuJ., PengM., RenJ., MengX., JiangX., ZhuC.. J. Non-Cryst. Solids, 2008, 354: 1235

[15]

WangX., XiaH.. Opt. Commun., 2006, 268: 75

[16]

RuanJ., WuE., WuB., ZengH., ZhangQ., DongG., QiaoY., ChenD., QiuJ.. J. Opt. Soc. Am. B, 2009, 26: 778

[17]

MurakamiS., HerrenM., RauD., MoritaM.. Chim. Acta., 2000, 300: 1014

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/