Influence of temperature and LO phonon on the effective mass of bipolarons in polar semiconductor quantum dots

Wei Xin , Zhong-ming Gao , Chao Han , Eerdunchaolu

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (6) : 477 -480.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (6) : 477 -480. DOI: 10.1007/s11801-012-2285-7
Article

Influence of temperature and LO phonon on the effective mass of bipolarons in polar semiconductor quantum dots

Author information +
History +
PDF

Abstract

The temperature and LO phonon effects of the bipolaron in polar semiconductor quantum dots (QDs) are studied by using the Tokuda modified linear-combination operator method and the Lee-Low-Pines variational method. The expressions for the mean number of LO phonons and the effective mass of the bipolaron are derived. Numerical results show that the mean number of LO phonons of the bipolaron decreases with increasing the temperature and the relative distance r between two electrons, but increases with increasing the electron-phonon coupling strength α. The effective mass of the bipolaron M* increases rapidly with increasing the relative distance r between two electrons when r is smaller, and it reaches a maximum at r ≈ 4.05rp, while after that, M* decreases slowly with increasing r. The effective mass of the bipolaron M* decreases with increasing the temperature. The electron-phonon coupling strength markedly influences the changes of mean number of LO phonons and the effective mass M* with the relative distance r and the temperature parameter γ.

Keywords

Effective Mass / Coupling Strength / Phonon Number / Polar Semiconductor / Phonon Effect

Cite this article

Download citation ▾
Wei Xin, Zhong-ming Gao, Chao Han, Eerdunchaolu. Influence of temperature and LO phonon on the effective mass of bipolarons in polar semiconductor quantum dots. Optoelectronics Letters, 2012, 8(6): 477-480 DOI:10.1007/s11801-012-2285-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

XuJ.-p., ShiS.-b., ZhangX.-s., LiL.. Journal of Optoelectronics Laser, 2010, 21: 1593

[2]

ZhangX.-s., LiL., HuangQ.-s., ZhangG.-f., XuJ.-p., XuanR.-w., WeiF.-w.. Journal of Optoelectronics Laser, 2011, 22: 1

[3]

JiangH.-lu., ChengC., MaD.-w.. Journal of Optoelectronics Laser, 2011, 22: 872

[4]

FailCi., TeboulV., MonteilA.. Condensed Matter Physics, 2005, 8: 639

[5]

XiaoJ. L., XiaoW.. Chin. J. Semiconductors, 2004, 25: 1428

[6]

YinJ. W., YuY. F., XiaoJ. L.. Chin. J. Lumin., 2005, 26: 304

[7]

XiaoW., XiaoJ. L.. Int. J. Mod. Phys. B, 2007, 21: 2007

[8]

YuR. M.. Acta Phys. Sin., 2008, 57: 7100

[9]

GeJ., WangN., ZhaoC. L.. Chinese Journal of Quantum Electronics, 2011, 28: 105

[10]

LiZ. X., XiaoJ. L., WangH. Y.. Modern Physics Letters B, 2010, 24: 2423

[11]

ChenS. H., YaoQ. Z.. Modern Physics Letters B, 2011, 25: 2419

[12]

XiaoX., HanX. C., XinW.. Commun. Theor. Phys., 2012, 57: 157

[13]

EminD.. Phys. Rev. Lett., 1989, 62: 1544

[14]

TokudaN.. J. Phys. C: Solid State Phys., 1980, 13: L851

[15]

LeeT. D., LowF. M., PinesD.. Phys. Rev., 1953, 90: 297

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/