Multiple-frequency basestation RoF system based on polarization multiplexed FWM in SOA

Yu Xiang, Chong-fu Zhang, Shu-hua Yin, Chen Chen, Kun Qiu

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (6) : 464-467.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (6) : 464-467. DOI: 10.1007/s11801-012-2279-5
Article

Multiple-frequency basestation RoF system based on polarization multiplexed FWM in SOA

Author information +
History +

Abstract

An approach of multiple-frequency millimeter-wave (mm-wave) signal generation is proposed for radio-over-fiber (RoF) system with multiple-frequency basestations (MFBSs). Two groups of orthogonally polarized signals are injected into a semiconductor optical amplifier (SOA), and subsequently ten new different wavelengths are generated via four-wave mixing (FWM) effect. At each MFBS, different wavelengths are filtered out using demultiplexer and then input to a photodiode (PD) to generate the mm-wave signals with the frequencies from 52 GHz to 68 GHz at the interval of 2 GHz. Simulation results verify that the proposed multiple-frequency generation for MFBS RoF system can work properly.

Keywords

Signal Band / Polarization Beam Splitter / Frequency Grid / Optical Heterodyne / Pump Signal

Cite this article

Download citation ▾
Yu Xiang, Chong-fu Zhang, Shu-hua Yin, Chen Chen, Kun Qiu. Multiple-frequency basestation RoF system based on polarization multiplexed FWM in SOA. Optoelectronics Letters, 2012, 8(6): 464‒467 https://doi.org/10.1007/s11801-012-2279-5

References

[1]
WuQ., XiongB., ShiT., SunC.-z., LuoY.. Journal of Optoelectronics Laser, 2011, 22: 1751
[2]
YuanY., QinY., SunJ.-q.. Journal of Optoelectronics Laser, 2011, 22: 1646
[3]
LiS., ZhengX., ZhangH., ZhouB.. Opt. Lett., 2011, 36: 546
CrossRef Google scholar
[4]
YaoJ.. J. Lightwave Technol., 2009, 27: 314
CrossRef Google scholar
[5]
QiG., YaoJ., SeregelyiJ., PaquetS., BelisleC.. IEEE Trans. Microw. Theory Tech., 2005, 53: 3090
CrossRef Google scholar
[6]
DangB. L., LarrodeM. G., PrasadR. V., NiemegeersI., KoonenA. M. J.. Comput. Commun., 2007, 30: 3598
CrossRef Google scholar
[7]
KimH., SongJ.. Microw. Theory Tech., 2010, 58: 3175
CrossRef Google scholar
[8]
BoW., Jin-LongY., Wen-ruiW.. Journal of Optoelectronics Laser, 2011, 22: 1639
[9]
WangF., DongJ., XuE., ZhangX.. Opt. Express, 2010, 18: 24588
CrossRef Google scholar
[10]
ZengF., WangQ., YaoJ.. Electron. Lett., 2007, 43: 119
CrossRef Google scholar
[11]
ZhangC., WangL., QiuK.. Opt. Express, 2011, 19: 13957
CrossRef Google scholar
[12]
WibergA., Pérez-MillánP., AndrésM. V., HedekvistP. O.. J. Lightwave Technol., 2006, 24: 329
CrossRef Google scholar
[13]
LeiG., Fei-feiY., Hong-weiC.. Journal of Optoelectronics Laser, 2011, 22: 1320
[14]
ZhangC., ChenC., FengY., QiuK.. Opt. Express, 2012, 20: 6230
CrossRef Google scholar
[15]
Zhi-lanL., Zi-zhengC., ZeD., LinC.. Journal of Optoelectronics Laser, 2010, 21: 383
[16]
MecozziA., MorkJ.. IEEE J. Select. Topics Quantum Electron., 1997, 3: 1190
CrossRef Google scholar
[17]
DiezS., SchmidtC., LudwigR.. IEEE J. Select.Topics Quantum Electron, 2011, 3: 1131
CrossRef Google scholar
[18]
ContestabileG., PresiM., CiaramellaE.. IEEE Photon. Technol. Lett., 2006, 16: 1175

This work has been supported by the National Natural Science Foundation of China (No.61171045), and the Key Youth Science and Technology Project of University of Electronic Science and Technology of China (No.JX0801).

Accesses

Citations

Detail

Sections
Recommended

/