Multiple-frequency basestation RoF system based on polarization multiplexed FWM in SOA

Yu Xiang , Chong-fu Zhang , Shu-hua Yin , Chen Chen , Kun Qiu

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (6) : 464 -467.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (6) : 464 -467. DOI: 10.1007/s11801-012-2279-5
Article

Multiple-frequency basestation RoF system based on polarization multiplexed FWM in SOA

Author information +
History +
PDF

Abstract

An approach of multiple-frequency millimeter-wave (mm-wave) signal generation is proposed for radio-over-fiber (RoF) system with multiple-frequency basestations (MFBSs). Two groups of orthogonally polarized signals are injected into a semiconductor optical amplifier (SOA), and subsequently ten new different wavelengths are generated via four-wave mixing (FWM) effect. At each MFBS, different wavelengths are filtered out using demultiplexer and then input to a photodiode (PD) to generate the mm-wave signals with the frequencies from 52 GHz to 68 GHz at the interval of 2 GHz. Simulation results verify that the proposed multiple-frequency generation for MFBS RoF system can work properly.

Keywords

Signal Band / Polarization Beam Splitter / Frequency Grid / Optical Heterodyne / Pump Signal

Cite this article

Download citation ▾
Yu Xiang, Chong-fu Zhang, Shu-hua Yin, Chen Chen, Kun Qiu. Multiple-frequency basestation RoF system based on polarization multiplexed FWM in SOA. Optoelectronics Letters, 2012, 8(6): 464-467 DOI:10.1007/s11801-012-2279-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WuQ., XiongB., ShiT., SunC.-z., LuoY.. Journal of Optoelectronics Laser, 2011, 22: 1751

[2]

YuanY., QinY., SunJ.-q.. Journal of Optoelectronics Laser, 2011, 22: 1646

[3]

LiS., ZhengX., ZhangH., ZhouB.. Opt. Lett., 2011, 36: 546

[4]

YaoJ.. J. Lightwave Technol., 2009, 27: 314

[5]

QiG., YaoJ., SeregelyiJ., PaquetS., BelisleC.. IEEE Trans. Microw. Theory Tech., 2005, 53: 3090

[6]

DangB. L., LarrodeM. G., PrasadR. V., NiemegeersI., KoonenA. M. J.. Comput. Commun., 2007, 30: 3598

[7]

KimH., SongJ.. Microw. Theory Tech., 2010, 58: 3175

[8]

BoW., Jin-LongY., Wen-ruiW.. Journal of Optoelectronics Laser, 2011, 22: 1639

[9]

WangF., DongJ., XuE., ZhangX.. Opt. Express, 2010, 18: 24588

[10]

ZengF., WangQ., YaoJ.. Electron. Lett., 2007, 43: 119

[11]

ZhangC., WangL., QiuK.. Opt. Express, 2011, 19: 13957

[12]

WibergA., Pérez-MillánP., AndrésM. V., HedekvistP. O.. J. Lightwave Technol., 2006, 24: 329

[13]

LeiG., Fei-feiY., Hong-weiC.. Journal of Optoelectronics Laser, 2011, 22: 1320

[14]

ZhangC., ChenC., FengY., QiuK.. Opt. Express, 2012, 20: 6230

[15]

Zhi-lanL., Zi-zhengC., ZeD., LinC.. Journal of Optoelectronics Laser, 2010, 21: 383

[16]

MecozziA., MorkJ.. IEEE J. Select. Topics Quantum Electron., 1997, 3: 1190

[17]

DiezS., SchmidtC., LudwigR.. IEEE J. Select.Topics Quantum Electron, 2011, 3: 1131

[18]

ContestabileG., PresiM., CiaramellaE.. IEEE Photon. Technol. Lett., 2006, 16: 1175

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/