Slow light propagation without absorption based on intersubband transitions in a semiconductor quantum well

Ding-an Han , Ya-guang Zeng , Yan-feng Bai

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 397 -400.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 397 -400. DOI: 10.1007/s11801-012-2276-8
Article

Slow light propagation without absorption based on intersubband transitions in a semiconductor quantum well

Author information +
History +
PDF

Abstract

When semiconductor quantum wells (SQWs) interact with lasers, the group velocity of the low-intensity light pulse is studied theoretically. It is shown that by adjusting the parameters, slow light propagation of the probe field can be exhibited in such a system. Meanwhile, the probe absorption-gain spectra can be changed from absorption to zero, i.e., electromagnetically induced transparency (EIT). It is easy to observe the light propagation experimentally, and it leads to potential applications in many fields of solid-state quantum information, for example, optical switching, detection and quantum computing.

Keywords

Group Velocity / Probe Field / Quantum Well / Electromagnetically Induce Transparency / Group Index

Cite this article

Download citation ▾
Ding-an Han, Ya-guang Zeng, Yan-feng Bai. Slow light propagation without absorption based on intersubband transitions in a semiconductor quantum well. Optoelectronics Letters, 2012, 8(5): 397-400 DOI:10.1007/s11801-012-2276-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ScullyM., ZubairyM.. Quantum Optics, Chap. 7, 1997, Cambridge, Cambridge University Press

[2]

FicekZ., SwainS.. Quantum Interference and Coherence: Theory and Experiments, 2004, New York, Springer

[3]

CaoX.-l., YaoJ.-q., ZhuN.-n., XuD.. Optoelectronics Letters, 2012, 8: 229

[4]

DynesJ., PaspalakisE.. Phys. Rev. B, 2006, 73: 233305

[5]

WuJ., GaoJ., XuJ., SilvestriL., ArtoniM., RocccaG., BassaniF.. Phys. Rev. Lett., 2005, 95: 057401

[6]

YaoJ.-Q., WangJ.-L., ZhongK., WangR., XuD.-G., DingX., ZhangF., WangP.. Journal of Optoelectronics · Laser, 2010, 21: 1582

[7]

SchmidtH., CampmanK., GossardA., ImamogluA.. Appl. Phys. Lett., 1997, 70: 3455

[8]

ZhaoY., HuangD., WuC.. Opt. Lett., 1994, 19: 816

[9]

SadeghiS., YoungJ., MeyerJ.. Phys. Rev. B, 1997, 56: R15557

[10]

SadeghiS., DrielH., FraserJ.. Phys. Rev. B, 2000, 62: 15386

[11]

DynesJ., FrogleyM., RodgerJ., PhillipsC.. Phys. Rev. B, 2005, 72: 085323

[12]

SchmidtH., RamR.. Appl. Phys. Lett., 2000, 76: 3173

[13]

JoshiA., XiaoM.. Appl. Phys. B, 2004, 79: 65

[14]

HamB.. Appl. Phys. Lett., 2001, 78: 3382

[15]

HauL., HarrisS., DuttonZ., BehrooziC.. Nature, 1999, 397: 594

[16]

KuP. C., SedgwickF., Chang-HasnainC. J., PalinginisP., LiT., WangH., ChangS. W., ChuangS. L.. Opt. Lett., 2004, 29: 2291

[17]

ChangS., ChuangS., KuP., ChangC., PalinginisP., WangH.. Phys. Rev. B, 2004, 70: 235333

[18]

PrineasJ., JohnstonW., YildirimM., ZhaoJ., SmirlA.. Appl. Phys. Lett., 2006, 89: 241106

[19]

FrogleyM., DynesJ., BeckM., FaistJ., PhillipsC.. Nature Materials, 2006, 5: 175

[20]

HanD., ZengY., BaiY.. Opt. Commu., 2011, 284: 4541

[21]

HanD., ZengY., BaiY., DongS., HuangC., LuH.. Phys. Letts. A, 2011, 375: 437

[22]

DynesJ., FrogleyM., BeckM., FaistJ., PhillipsC.. Phys. Rev. Lett., 2005, 94: 157403

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/