Slow light propagation without absorption based on intersubband transitions in a semiconductor quantum well

Ding-an Han, Ya-guang Zeng, Yan-feng Bai

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 397-400.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 397-400. DOI: 10.1007/s11801-012-2276-8
Article

Slow light propagation without absorption based on intersubband transitions in a semiconductor quantum well

Author information +
History +

Abstract

When semiconductor quantum wells (SQWs) interact with lasers, the group velocity of the low-intensity light pulse is studied theoretically. It is shown that by adjusting the parameters, slow light propagation of the probe field can be exhibited in such a system. Meanwhile, the probe absorption-gain spectra can be changed from absorption to zero, i.e., electromagnetically induced transparency (EIT). It is easy to observe the light propagation experimentally, and it leads to potential applications in many fields of solid-state quantum information, for example, optical switching, detection and quantum computing.

Keywords

Group Velocity / Probe Field / Quantum Well / Electromagnetically Induce Transparency / Group Index

Cite this article

Download citation ▾
Ding-an Han, Ya-guang Zeng, Yan-feng Bai. Slow light propagation without absorption based on intersubband transitions in a semiconductor quantum well. Optoelectronics Letters, 2012, 8(5): 397‒400 https://doi.org/10.1007/s11801-012-2276-8

References

[1]
ScullyM., ZubairyM.. Quantum Optics, Chap. 7, 1997, Cambridge, Cambridge University Press
[2]
FicekZ., SwainS.. Quantum Interference and Coherence: Theory and Experiments, 2004, New York, Springer
[3]
CaoX.-l., YaoJ.-q., ZhuN.-n., XuD.. Optoelectronics Letters, 2012, 8: 229
CrossRef Google scholar
[4]
DynesJ., PaspalakisE.. Phys. Rev. B, 2006, 73: 233305
CrossRef Google scholar
[5]
WuJ., GaoJ., XuJ., SilvestriL., ArtoniM., RocccaG., BassaniF.. Phys. Rev. Lett., 2005, 95: 057401
CrossRef Google scholar
[6]
YaoJ.-Q., WangJ.-L., ZhongK., WangR., XuD.-G., DingX., ZhangF., WangP.. Journal of Optoelectronics · Laser, 2010, 21: 1582
[7]
SchmidtH., CampmanK., GossardA., ImamogluA.. Appl. Phys. Lett., 1997, 70: 3455
CrossRef Google scholar
[8]
ZhaoY., HuangD., WuC.. Opt. Lett., 1994, 19: 816
CrossRef Google scholar
[9]
SadeghiS., YoungJ., MeyerJ.. Phys. Rev. B, 1997, 56: R15557
CrossRef Google scholar
[10]
SadeghiS., DrielH., FraserJ.. Phys. Rev. B, 2000, 62: 15386
CrossRef Google scholar
[11]
DynesJ., FrogleyM., RodgerJ., PhillipsC.. Phys. Rev. B, 2005, 72: 085323
CrossRef Google scholar
[12]
SchmidtH., RamR.. Appl. Phys. Lett., 2000, 76: 3173
CrossRef Google scholar
[13]
JoshiA., XiaoM.. Appl. Phys. B, 2004, 79: 65
CrossRef Google scholar
[14]
HamB.. Appl. Phys. Lett., 2001, 78: 3382
CrossRef Google scholar
[15]
HauL., HarrisS., DuttonZ., BehrooziC.. Nature, 1999, 397: 594
CrossRef Google scholar
[16]
KuP. C., SedgwickF., Chang-HasnainC. J., PalinginisP., LiT., WangH., ChangS. W., ChuangS. L.. Opt. Lett., 2004, 29: 2291
CrossRef Google scholar
[17]
ChangS., ChuangS., KuP., ChangC., PalinginisP., WangH.. Phys. Rev. B, 2004, 70: 235333
CrossRef Google scholar
[18]
PrineasJ., JohnstonW., YildirimM., ZhaoJ., SmirlA.. Appl. Phys. Lett., 2006, 89: 241106
CrossRef Google scholar
[19]
FrogleyM., DynesJ., BeckM., FaistJ., PhillipsC.. Nature Materials, 2006, 5: 175
CrossRef Google scholar
[20]
HanD., ZengY., BaiY.. Opt. Commu., 2011, 284: 4541
CrossRef Google scholar
[21]
HanD., ZengY., BaiY., DongS., HuangC., LuH.. Phys. Letts. A, 2011, 375: 437
CrossRef Google scholar
[22]
DynesJ., FrogleyM., BeckM., FaistJ., PhillipsC.. Phys. Rev. Lett., 2005, 94: 157403
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.61008063, 10904015 and 10547108), and the Key Project of the National Natural Science Foundation of China (No.60837004).

Accesses

Citations

Detail

Sections
Recommended

/