A new probability decoding scheme based on genetic algorithm for FEC codes in optical transmission systems

Jian-guo Yuan , Lin Wang , Qing-ping He , Hao Li , Yong Wang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 376 -379.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 376 -379. DOI: 10.1007/s11801-012-2270-1
Article

A new probability decoding scheme based on genetic algorithm for FEC codes in optical transmission systems

Author information +
History +
PDF

Abstract

Based on the genetic algorithm (GA), a new genetic probability decoding (GPD) scheme for forward error correction (FEC) codes in optical transmission systems is proposed. The GPD scheme can further offset the quantification error of the hard decision by making use of the channel interference probability and statistics information to restore the maximal likelihood transmission code word. The theoretical performance analysis and the simulation result show that the proposed GPD scheme has the advantages of lower decoding complexity, faster decoding speed and better decoding correction-error performance. Therefore, the proposed GPD algorithm is a better practical decoding algorithm.

Keywords

Forward Error Correction / Code Word / Forward Error Correction Code / Chase2 Algorithm / Algorithm Gain

Cite this article

Download citation ▾
Jian-guo Yuan, Lin Wang, Qing-ping He, Hao Li, Yong Wang. A new probability decoding scheme based on genetic algorithm for FEC codes in optical transmission systems. Optoelectronics Letters, 2012, 8(5): 376-379 DOI:10.1007/s11801-012-2270-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MasatakaN., Kikuchi, MiyazakiT.. High Spectral Density Optical Communication Technologies, 2010, New York, Springer

[2]

YuanJ.-g., YeW.-w., MaoY.-j.. Journal of Optoelectronics Laser, 2009, 20: 1450

[3]

DjordjevicI. B., RyanW., VasicB.. Coding for Optical Channels, 2010, New York, Springer

[4]

YuanJ.-g., HeQ.-p., LiangT.-y., WangY.. Journal of Optoelectronics Laser, 2012, 23: 1093

[5]

HuffmanW. C., PlessV.. Fundamentals of Error-Correcting Codes, 2003, Cambridge, University Press

[6]

YuanJ.-g., WangW., LiangT.-y.. Journal of References Optoelectronics Aser, 2012, 23: 906

[7]

GuoJ.-z.. Optoelectronics Letters, 2011, 7: 147

[8]

FossorierM. P. C., LinS.. IEEE Trans. Inform. Theory, 2002, IT-48: 287

[9]

KoyhiyalA., TakeshitaO. Y., JinW.. IEEE Trans. Commun. Lett., 2005, 9: l067

[10]

GhoshA. K.. Optoelectronics Letters, 2010, 6: 325

[11]

HollandJ. H.. Adaptation in Natural and Artifieal Systems, 1975, Ann Arbor, Miehigan University Press

[12]

AzouaouiA., BelkasmiM., FarchaneA.. Journal of Electrical and Computer Engineering, 2012, 10: 1155

[13]

BerbiaH., ElbouananiF., RomadiR., BelkasmiM.. World Academy of Science, Engineering and Technology, 2011, 76: 850

[14]

ChenG., WangX., ZhuangZ.. Genetic Algorithm and its Application, 2001, Beijing China, Posts & Telecom Press

[15]

HanK.-H., KimJ.-H.. Genetic Quantum Algorithm and its Application to Combinatorial Optimization ProblemProceedings of the 2000 Congress on Evolutionary Computation, 2000, 2: 1354

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/