Rayleigh backscattering minimization in single fiber colorless WDM-PON using intensity remodulation technique

Yousaf Khan, Chong-xiu Yu, Xiang-jun Xin, Amjad Ali, Aftab Husain, Bo Liu

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 380-383.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 380-383. DOI: 10.1007/s11801-012-2268-8
Article

Rayleigh backscattering minimization in single fiber colorless WDM-PON using intensity remodulation technique

Author information +
History +

Abstract

The performance of colorless wavelength-division multiplexed passive optical network (WDM-PON) systems suffers from the transmission impairments mainly due to Rayleigh backscattering (RB). In this paper, we propose and demonstrate a single fiber colorless WDM-PON which enhances the tolerance to RB induced noise. The high extinction ratio in both return-to-zero (RZ)-shaped differential phase shift keying (DPSK) downstream (DS) data signal and intensity-remodulated upstream (US) data signal helps to improve the tolerance to RB induced noise. Simulation results show that downstream and upstream signals can achieve error-free performance at 10 Gbit/s with negligible penalty and improve the tolerance to RB induced noise over 25 km standard single-mode fiber.

Keywords

Upstream Signal / Power Splitter / Passive Optical Network / Power Penalty / High Extinction Ratio

Cite this article

Download citation ▾
Yousaf Khan, Chong-xiu Yu, Xiang-jun Xin, Amjad Ali, Aftab Husain, Bo Liu. Rayleigh backscattering minimization in single fiber colorless WDM-PON using intensity remodulation technique. Optoelectronics Letters, 2012, 8(5): 380‒383 https://doi.org/10.1007/s11801-012-2268-8

References

[1]
JiaZ., YuJ., EllinasG., ChangG.-K.. J. Lightwave Technol., 2007, 25: 3452
CrossRef Google scholar
[2]
E. Wong, Current and Next-Generation Broadband Access Technologies, Optical Fibre Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, 1 (2011).
[3]
FujiwaraM., KaniJ., SuzukiH., IwatsukiK.. J. Lightwave Technol., 2006, 24: 740
CrossRef Google scholar
[4]
BanchiL., CorsiniR., PresiM., CavaliereF., CiaramellaE.. Electronics Letters, 2010, 46: 1009
CrossRef Google scholar
[5]
BerrettiniG., MeloniG., GiorgiL., PonziniF., CavaliereF., GhigginoP., PotìL., BogoniA.. IEEE Photonics Technology Letters, 2009, 21: 453
CrossRef Google scholar
[6]
LinS.-C., LeeS.-L., LinH.-H., KeiserG., RamR. J.. J. Lightwave Technol., 2011, 29: 3727
CrossRef Google scholar
[7]
ChowdhuryA., ChienH.-C., HuangM.-f., YuJ., ChangG.-K.. IEEE Photonics Technology Letters, 2008, 20: 2081
CrossRef Google scholar
[8]
UrbanP. J., KoonenA. M. J., KhoeG.D., de WaardtH.. J. Lightwave Technol., 2009, 22: 4943
CrossRef Google scholar
[9]
GuoQ., TranA. V.. Electronics Letters, 2011, 47: 1333
CrossRef Google scholar
[10]
ChiuchiarelliA., PresiM., ProiettiR., ContestabileG., ChoudhuryP., GiorgiL., CiaramellaE.. IEEE Photonics Technol. Lett., 2010, 22: 85
CrossRef Google scholar
[11]
YehC. H., ChowC. W.. IEEE Communication Letters, 2011, 15: 1114
CrossRef Google scholar
[12]
Jing Xu, Lian-Kuan Chen and Chun-Kit Chan, High Extinction Ratio Phase Re-modulation for 10 Gb/s WDM-PON with Enhanced Tolerance to Rayleigh Noise, 9th International Conference on Optical Internet (COIN), 1 (2010).
[13]
ArellanoC., LangerK., PratJ.. J. Lightwave Technol., 2009, 27: 12
CrossRef Google scholar
[14]
DericksonD.. Fiber Optics Test and Measurement, Hewlett-Packard Prof. Book’s ed, 1997, Englewood Cliffs, NJ, Prentice-Hall

This work has been supported by the National Basic Research Program of China (No.2010CB328300), the National Natural Science Foundation of China (Nos.61077050, 61077014 and 60932004), the Beijing University of Posts and Telecommunications (BUPT) Young Foundation (No. 2009CZ07), the Fundamental Research Funds for the Central Universities (Nos.2011RC0307 and 2011RC0314), and the Open Foundation of State Key Laboratory of Optical Communications Technologies and Networks (WRI) (No.2010-OCTN-02).

Accesses

Citations

Detail

Sections
Recommended

/