Spectral characterization of fiber Bragg grating with etched fiber cladding

Qian Zhou, Ti-gang Ning, Li Pei, Chao Li

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 328-331.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 328-331. DOI: 10.1007/s11801-012-2263-0
Article

Spectral characterization of fiber Bragg grating with etched fiber cladding

Author information +
History +

Abstract

A new method is presented to tune Bragg wavelength slightly by using hydrofluoric acid to etch fiber cladding. The spectral characteristics before and after etching and the change properties of Bragg wavelength are studied. Cladding modes are reduced during the etching process. High-order cladding modes are converted into radiation modes, and energy of cladding modes is coupled to the outside. As the cladding radius decreases, the Bragg wavelength shifts to longer direction. Experimental results show that this method can tune Bragg wavelength slightly, and the tunable range is 0.002 −0.120 nm.

Keywords

Radiation Mode / Fiber Bragg Grating / Hydrofluoric Acid / Tunable Range / Effective Refractive Index

Cite this article

Download citation ▾
Qian Zhou, Ti-gang Ning, Li Pei, Chao Li. Spectral characterization of fiber Bragg grating with etched fiber cladding. Optoelectronics Letters, 2012, 8(5): 328‒331 https://doi.org/10.1007/s11801-012-2263-0

References

[1]
KerseyA. D., DavisM. A., PatrickH. J., LeBlancM., KooK. P., AskinsC. G., PutnamM. A., FriebeleE. J.. J. Lightwave Technol., 1997, 15: 1442
CrossRef Google scholar
[2]
GuanB. O., TamH. Y., HoS. L., WengH. C., DongX. Y.. Electron. Lett., 2000, 26: 1018
CrossRef Google scholar
[3]
ChenQ. Y., ShiS. H., ZhangZ. Y., FangK., ZhouX. J.. Journal of Optoelectronics · Laser, 2011, 22: 677
[4]
ZhangK., WangS.. Journal of Optoelectronics · Laser, 2012, 23: 15
[5]
GuoW., LiuK., HuangY. Q.. Journal of Optoelectronics · Laser, 2000, 11: 23
[6]
D. Z. Yang, D. J. Feng, J. Wang, M. S. Jiang and Q. M. Sui, Tunable Chirped Fiber Bragg Grating based on Two-fixedend Compressive Bar without Central Wavelength Shift, the Pacific Rim Conference on Lasers and Electro-Optics, 1 (2009).
[7]
LuP., MenL. Q., ChenQ. Y.. Journal of Applied Physics, 2009, 106: 013111
CrossRef Google scholar
[8]
G. R. Vargas and R. R. Panepucci, Wavelength Monitoring using a Thermally Tuned Micro-ring Resonator, 10th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 83 (2010).
[9]
YuX. N., SunC. C., ZhangQ.. Journal of Tsinghua Univ-ersity (Science and Technology), 2005, 45: 456
[10]
ZhangW. G., KaiG. Y., DongX. Y., YuanS. Z., ZhaoQ. D.. Acta Optica Sinica, 2003, 23: 164
[11]
QinZ. X., ZengQ. K., XiangY., FengD. J., YuanS. Z., KaiG. Y., LiuZ. G., DongX. Y.. Acta Optica Sinica, 2001, 21: 1421
[12]
ZhenL., ZheC., HsiaoV. K. S., TangJ. Y., ZhaoF. L., JiangS. J.. Optics Express, 2012, 20: 10827
CrossRef Google scholar
[13]
LiuL. H., ChenZ., BaiC. H., LiZ.. Acta Photonic Sinica, 2007, 36: 865
[14]
ZhenL., HsiaoV. K. S., ZheC., TangJ. Y., ZhaoF. L., WangH. Z.. IEEE Photon. Technol. Lett., 2010, 22: 1123
CrossRef Google scholar
[15]
VengsarkarA., LemaireP., JudkinsJ., BhatiaV.. J. Lightwave Technol., 1997, 14: 58
CrossRef Google scholar
[16]
MizrahiV., SipeJ.. J. Lightwave Technol., 1993, 11: 1512
[17]
PatrickH., KerseyA., BucholtzF.. J. Lightwave Technol., 1998, 16: 1606
CrossRef Google scholar
[18]
StegallD., ErdoganT.. IEEE Photon. Technol. Lett., 1999, 11: 343
CrossRef Google scholar
[19]
JiaZ. A., ZhangL., QiaoX. G., MaC.. Journal of Optoelectronics · Laser, 2008, 19: 315

This work has been supported by the National Natural Science Foundation of China (Nos.60837002 and 61177069), the Ph.D. Programs Foundation of Ministry of Education of China (No.20090009110003), and the Fundamental Research Funds for the Central Universities (No.2011YJS219).

Accesses

Citations

Detail

Sections
Recommended

/