A wavelength division multiplexer based on plastic surfacerelief grating applied to local area communication network

Bao-qing Lin , Yun Zhai , Qi-ren Zhuang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 344 -347.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 344 -347. DOI: 10.1007/s11801-012-2262-1
Article

A wavelength division multiplexer based on plastic surfacerelief grating applied to local area communication network

Author information +
History +
PDF

Abstract

A plastic surface-relief grating as a wavelength division multiplexer is designed and fabricated with the conventional mould pressing technique using the transmission-type fused quartz phase grating as mask pattern and polycarbonate as basal material. The experiment results show that in an optimizing process, the plastic surface-relief grating has the highest firstorder diffraction efficiency under adequate groove depth and incident angle, and can be used as the best optical path for wavelength division multiplexing (WDM). We also establish the experiment setup for testing the WDM performance of the plastic surface-relief grating based wavelength division multiplexer. The results show that the proposed wavelength division multiplexer has the high-stability temperature characteristics, the low insertion loss of less than 5 dB, the large isolation of greater than 20 dB, the low polarization-dependent loss (PDL) of less than 0.4 dB and the relatively steep pass-band characteristics. It is a WDM device with good performance, which can be applied in short distance communication.

Keywords

Wavelength Division Multiplex / Diffraction Efficiency / Mould Temperature / Groove Depth / Incident Wavelength

Cite this article

Download citation ▾
Bao-qing Lin, Yun Zhai, Qi-ren Zhuang. A wavelength division multiplexer based on plastic surfacerelief grating applied to local area communication network. Optoelectronics Letters, 2012, 8(5): 344-347 DOI:10.1007/s11801-012-2262-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PengH.-C., LuH.-H., LiC.-Y., SuH.-S., HsuC.-T.. Optics Express, 2011, 19: 6749

[2]

SugitaT., AbeT., HiranoK., ItohY.. Applied Optics, 2005, 44: 2933

[3]

MakinoK., NakamuraT., IshigureT., KoikeY.. Journal of Lightwave Technology, 2005, 23: 2062

[4]

MöllersI., JägerD., GaudinoR., NocivelliA., KraglH., ZiemannO., WeberN., KoonenT., LezziC., BluschkeA., RandelS.. IEEE Communications Magazine, 2009, 47: 58

[5]

LopezD. F. C., NespolaA., CamatelS., AbrateS., GaudinoR.. Journal of Lightwave Technology, 2009, 27: 2908

[6]

KoikeY., KoikeK.. Journal of Polymer Science Part B: Polymer Physics, 2011, 49: 2

[7]

JoséM. J., NoemiM., AsierV.. Applied Optics, 2012, 51: 692

[8]

SaliouF., ChanclouP., LaurentF.. J. Opt. Commun. Netw., 2009, 1: C51

[9]

RabeloR. C., EknoyanO., TaylorH. F.. Applied Optics, 2011, 50: 562

[10]

ShuaiC., GaoC., NieY.. Applied Optics, 2010, 49: 4514

[11]

HagenN., TkaczykT. S.. Applied Optics, 2011, 50: 4998

[12]

LuoY., CastroJ., BartonJ. K.. Optics Express, 2010, 18: 19273

[13]

BelokopytovA. A., ShakirovN. F.. Journal of Optical Technology, 2010, 77: 510

[14]

Bayanhesshig, QiX.-d., TangY.-g.. Journal of Optoelectronics · Laser, 2003, 14: 1021

[15]

LiH.-l., LouS.-q.. Journal of Optoelectronics · Laser, 2010, 21: 1459

[16]

CaoF., ShouG.-c., HuY.-h.. Journal of Optoelectronics · Laser, 2009, 20: 1033

[17]

ZhangJ.-s., AnJ.-m., ZhaoL.. Journal of Optoelectronics · Laser, 2010, 21: 1431

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/