Research on the transverse mode competition in a Yb-doped 18-core photonic crystal fiber laser

Yuan Wang, Jian-quan Yao, Yi-bo Zheng, Wu-qi Wen, Ying Lu, Peng Wang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (6) : 426-429.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (6) : 426-429. DOI: 10.1007/s11801-012-2258-x
Article

Research on the transverse mode competition in a Yb-doped 18-core photonic crystal fiber laser

Author information +
History +

Abstract

A model based on propagation rate equations is built up for analyzing the multicore transverse mode gain distribution in an 18-core photonic crystal fiber (PCF) laser. The two kinds of feedback cavities are used for the fiber laser, which are the buttcontact mirror and the Talbot cavity. According to the model, the transverse mode competitions in different feedback cavities are simulated numerically. The results show that the Talbot cavity can improve in-phase supermode gain, while suppress other supermodes.

Keywords

Fiber Laser / Photonic Crystal Fiber / Total Output Power / Fresnel Diffraction / Large Mode Area

Cite this article

Download citation ▾
Yuan Wang, Jian-quan Yao, Yi-bo Zheng, Wu-qi Wen, Ying Lu, Peng Wang. Research on the transverse mode competition in a Yb-doped 18-core photonic crystal fiber laser. Optoelectronics Letters, 2012, 8(6): 426‒429 https://doi.org/10.1007/s11801-012-2258-x

References

[1]
JeongY., SahuJ. K., PayneD. N., NilssonJ.. Electron. Lett., 2004, 40: 470
CrossRef Google scholar
[2]
JeongY., SahuJ. K., PayneD. N., NilssonJ.. Opt. Express, 2004, 12: 6088
CrossRef Google scholar
[3]
A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H.-P. Muller, J. Kirchhof, T. Sandrock and A. Harschak, 1.3 kW Yb-doped Fiber Laser with Excellent Beam Quality, Proc. Conference on Lasers and Electro-Optics, San Francisco, 2004.
[4]
BabushkinA., PlatonovN. S., GapontsevV. P.. Proc. SPIE, 2005, 5709: 98
CrossRef Google scholar
[5]
HuoY., CheoP. K.. IEEE Photon. Technol. Lett., 2004, 16: 759
CrossRef Google scholar
[6]
WangR.-q., YaoJ.-q., ZhouR., WangJ.-l., LiJ.-h., WenW.-q., LuY., ZhongK., WenQ., ZhangH.-w.. Journal of Optoelectronics Laser, 2011, 22: 1609
[7]
SaitobK., TsuchidaY., KoshibaM.. Opt, Express, 2005, 13: 10833
CrossRef Google scholar
[8]
RussellP. St. J.. J. Lightw. Techol., 2006, 24: 4729
CrossRef Google scholar
[9]
HansenK. P., OlaussonC. B., BroengJ., MattssonK., NielsenM. D., NikolajsenT., SkovgaardP. M. W., rensenM. H. S., DenningerM., JakobsenC., SimonsenH. R.. Proc. SPIE, 2008, 6873: 687307
CrossRef Google scholar
[10]
VarshneyS. K., SaitohK., SinhaR. K., KoshibaM.. J. Lightw. Technol., 2009, 27: 2062
CrossRef Google scholar
[11]
DoroszD., KochanowiczM., DoroszJ.. Acta Physics Polonica A, 2009, 116: 3
[12]
MichailleL., BennettC. R., TaylorD. M., ShepherdT. J.. IEEE J. Sel. Top. Quant., 2009, 15: 328
CrossRef Google scholar
[13]
FangX.-H., HuM.-L., LiY.-F., ChaiL., WangC.-Y., ZheltikovA. M.. Opt. Lett., 2010, 35: 493
CrossRef Google scholar
[14]
FangX., HuM., LiY., ChaiL., WangQ.. Chinese Sci. Bull., 2010, 55: 1864
CrossRef Google scholar
[15]
GuanC., YuanL., ShiJ.. Opt. Comm., 2010, 283: 2686
CrossRef Google scholar
[16]
ZhangX., ZhangX., WangQ., ChangJ., PengG.. J. Opt. Soc. Am. A, 2011, 28: 924
CrossRef Google scholar
[17]
ZhangS.-s., ZhangW.-g., LiuZ.-l., LiX.-l.. Journal of Optoelectronics Laser, 2011, 22: 685
[18]
LiY., ErdoganT.. Opt. Comm., 2000, 183: 377
CrossRef Google scholar
[19]
WrageM., GlasP., FisherD., LeitnerM., VysotskyD. V., NapartovichA. P.. Opt. Lett., 2000, 25: 1436
CrossRef Google scholar
[20]
HuoY., CheoP. K.. J. Opt. Soc. Am. B, 2005, 22: 2345
CrossRef Google scholar
[21]
PaschottaR., NilssonJ., TropperA. C., HannaD. C.. IEEE J. Quantum Electron., 1997, 33: 1049
CrossRef Google scholar

This work has been supported by the National Basic Research Program of China (No.2010CB327801), the Key Program of National Natural Science Foundation of China (No.60637010).

Accesses

Citations

Detail

Sections
Recommended

/