Flux-adjusted phase transformation from Ca2SiO4 to Ca3Si2O7 with Eu2+ activator for white light emitting diodes

Hua Tian , Jun Song , Qi-fei Lu , Da-jian Wang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 352 -355.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 352 -355. DOI: 10.1007/s11801-012-2257-y
Article

Flux-adjusted phase transformation from Ca2SiO4 to Ca3Si2O7 with Eu2+ activator for white light emitting diodes

Author information +
History +
PDF

Abstract

Eu2+-activated reddish-orange-emitting Ca3Si2O7 phosphors were synthesized with the addition of NH4Cl flux. When the phosphors were synthesized in a nominal composition of (Ca0.99Eu0.01)3Si2O7 without flux addition, a Ca3Si2O7 phase responsible for reddish-orange emission was identified to coexist with an intermediate phase of â-Ca2SiO4 for green emission. With the addition of NH4Cl flux, â-Ca2SiO4 was suppressed while the pure phase Ca3Si2O7 was obtained as the flux content was 3 wt%. Through varying the amount of flux, the emission color of samples can be tuned from green to reddish-orange, corresponding to the phase transformation from â-Ca2SiO4 to Ca3Si2O7. Through optimizing the doping concentration of Eu2+, the optimized photoluminescence (PL) properties for reddish-orange emission can be achieved, which makes this kind of phosphor prospective in the applications of the phosphor-converted white light emitting diodes (PC-WLEDs).

Keywords

Nominal Composition / Green Emission / Correlate Color Temperature / Color Render Index / Phosphor Sample

Cite this article

Download citation ▾
Hua Tian, Jun Song, Qi-fei Lu, Da-jian Wang. Flux-adjusted phase transformation from Ca2SiO4 to Ca3Si2O7 with Eu2+ activator for white light emitting diodes. Optoelectronics Letters, 2012, 8(5): 352-355 DOI:10.1007/s11801-012-2257-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SchubertE. F., KimJ. K.. Sci., 2005, 308: 1274

[2]

SongG.-h., MiaoJ.-w., XuS.-w., JiX.. Journal of Optoelectronics Laser, 2010, 21: 1785

[3]

KuoT. W., LiuW. R., ChenT. M.. Opt. Express, 2010, 18: 8187

[4]

XiaY. J., HuangF. Q., WangW. D., WangY. M., YuanK. D., LiuM. L., ShiJ. L.. Opt. Mater., 2008, 31: 311

[5]

QiuK., XuuS.-c., TianH., ZhengX., LvT., LuQ.-f., WangD.-j.. Optoelectronics Letters, 2011, 7: 350

[6]

ZeunerM., SchmidtP. J., SchnickW.. Chem. Mater., 2009, 21: 2467

[7]

WeiX. D., CaiL. Y., LuF. C., ChenX. L., ChenX. Y., LiuQ. L.. Chin. Phys. B, 2009, 18: 3555

[8]

LiY. Q., HirosakiN., XieR. J., TakedaT., MitomoM.. Chem. Mater., 2008, 20: 6704

[9]

MeijerinkA., BachmannV., RondaC., OecklerO., SchnickW.. Chem. Mater., 2009, 21: 316

[10]

TodaK., KawakamiY., KousakaS., ItoY., KomenoA., UematsuK., SatoM.. Ieice T. Electron., 2006, E89c: 1406

[11]

NakanishiT., TanabeS.. Phys. Status Solidi. A, 2009, 206: 919

[12]

YoonD. H., ParkW. J., JungM. K., KangS. M., MasakiT.. J. Phys. Chem. Solids, 2008, 69: 1505

[13]

ZhuangW. D., DengC. Y., HeD. W., WangY. S., KangK., HuangX. W.. J. Rare Earths, 2004, 22: 108

[14]

LeeG. H., YoonC., KangS.. J. Mater. Sci., 2008, 43: 6109

[15]

ZhangX. Y., ChengG., LiuQ. S., ChengL. Q., LuL. P., SunH. Y., WuY. Q., BaiZ. H., QiuG. M.. J. Rare Earths, 2010, 28: 526

[16]

MaL., WangD. J., ZhangH. M., GuT. C., YuanZ. H.. Electrochem. Solid State Lett., 2008, 11: E1

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/