Flux-adjusted phase transformation from Ca2SiO4 to Ca3Si2O7 with Eu2+ activator for white light emitting diodes

Hua Tian, Jun Song, Qi-fei Lu, Da-jian Wang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 352-355.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 352-355. DOI: 10.1007/s11801-012-2257-y
Article

Flux-adjusted phase transformation from Ca2SiO4 to Ca3Si2O7 with Eu2+ activator for white light emitting diodes

Author information +
History +

Abstract

Eu2+-activated reddish-orange-emitting Ca3Si2O7 phosphors were synthesized with the addition of NH4Cl flux. When the phosphors were synthesized in a nominal composition of (Ca0.99Eu0.01)3Si2O7 without flux addition, a Ca3Si2O7 phase responsible for reddish-orange emission was identified to coexist with an intermediate phase of â-Ca2SiO4 for green emission. With the addition of NH4Cl flux, â-Ca2SiO4 was suppressed while the pure phase Ca3Si2O7 was obtained as the flux content was 3 wt%. Through varying the amount of flux, the emission color of samples can be tuned from green to reddish-orange, corresponding to the phase transformation from â-Ca2SiO4 to Ca3Si2O7. Through optimizing the doping concentration of Eu2+, the optimized photoluminescence (PL) properties for reddish-orange emission can be achieved, which makes this kind of phosphor prospective in the applications of the phosphor-converted white light emitting diodes (PC-WLEDs).

Keywords

Nominal Composition / Green Emission / Correlate Color Temperature / Color Render Index / Phosphor Sample

Cite this article

Download citation ▾
Hua Tian, Jun Song, Qi-fei Lu, Da-jian Wang. Flux-adjusted phase transformation from Ca2SiO4 to Ca3Si2O7 with Eu2+ activator for white light emitting diodes. Optoelectronics Letters, 2012, 8(5): 352‒355 https://doi.org/10.1007/s11801-012-2257-y

References

[1]
SchubertE. F., KimJ. K.. Sci., 2005, 308: 1274
CrossRef Google scholar
[2]
SongG.-h., MiaoJ.-w., XuS.-w., JiX.. Journal of Optoelectronics Laser, 2010, 21: 1785
[3]
KuoT. W., LiuW. R., ChenT. M.. Opt. Express, 2010, 18: 8187
CrossRef Google scholar
[4]
XiaY. J., HuangF. Q., WangW. D., WangY. M., YuanK. D., LiuM. L., ShiJ. L.. Opt. Mater., 2008, 31: 311
CrossRef Google scholar
[5]
QiuK., XuuS.-c., TianH., ZhengX., LvT., LuQ.-f., WangD.-j.. Optoelectronics Letters, 2011, 7: 350
CrossRef Google scholar
[6]
ZeunerM., SchmidtP. J., SchnickW.. Chem. Mater., 2009, 21: 2467
CrossRef Google scholar
[7]
WeiX. D., CaiL. Y., LuF. C., ChenX. L., ChenX. Y., LiuQ. L.. Chin. Phys. B, 2009, 18: 3555
CrossRef Google scholar
[8]
LiY. Q., HirosakiN., XieR. J., TakedaT., MitomoM.. Chem. Mater., 2008, 20: 6704
CrossRef Google scholar
[9]
MeijerinkA., BachmannV., RondaC., OecklerO., SchnickW.. Chem. Mater., 2009, 21: 316
CrossRef Google scholar
[10]
TodaK., KawakamiY., KousakaS., ItoY., KomenoA., UematsuK., SatoM.. Ieice T. Electron., 2006, E89c: 1406
CrossRef Google scholar
[11]
NakanishiT., TanabeS.. Phys. Status Solidi. A, 2009, 206: 919
CrossRef Google scholar
[12]
YoonD. H., ParkW. J., JungM. K., KangS. M., MasakiT.. J. Phys. Chem. Solids, 2008, 69: 1505
CrossRef Google scholar
[13]
ZhuangW. D., DengC. Y., HeD. W., WangY. S., KangK., HuangX. W.. J. Rare Earths, 2004, 22: 108
[14]
LeeG. H., YoonC., KangS.. J. Mater. Sci., 2008, 43: 6109
CrossRef Google scholar
[15]
ZhangX. Y., ChengG., LiuQ. S., ChengL. Q., LuL. P., SunH. Y., WuY. Q., BaiZ. H., QiuG. M.. J. Rare Earths, 2010, 28: 526
CrossRef Google scholar
[16]
MaL., WangD. J., ZhangH. M., GuT. C., YuanZ. H.. Electrochem. Solid State Lett., 2008, 11: E1
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.50872091, 21076161 and 50802062), the Tianjin Municipal Science/Technology Commission (Nos.10SYSYJC28100 and 2006ZD30), and the Tianjin Municipal Higher Education Commission (No.20110304).

Accesses

Citations

Detail

Sections
Recommended

/