Effect of SGC on transient evolution of GWI in a Doppler broadened quasi Λ-type four-level system

Zhong-bo Liu , Dian-min Tong , Xi-jun Fan

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 393 -396.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (5) : 393 -396. DOI: 10.1007/s11801-012-2252-3
Article

Effect of SGC on transient evolution of GWI in a Doppler broadened quasi Λ-type four-level system

Author information +
History +
PDF

Abstract

Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2012 In this paper, we study the effect of spontaneously generated coherence (SGC) on transient evolution of gain without inversion (GWI) in a Doppler broadened quasi Λ-type four-level atomic system. It is shown that transient evolution of GWI is very sensitive to the variation of SGC strength, and the transient maximum value and steady value of GWI both increase with SGC strength increasing. The transient and steady values of GWI with SGC are much larger than those without SGC. When Doppler broadening is present, the transient maximum value and steady value of GWI first increase and then decrease with Doppler broadening width (D) increasing, and the value of D which corresponds to the maximum transient GWI is different from that corresponding to the maximum steady GWI. The time needed for reaching the steady GWI increases with D increasing. The steady GWI, which is larger than that without Doppler broadening (D = 0), can be obtained by choosing appropriate D and SGC strength.

Keywords

Atomic System / Rabi Frequency / Frequency Detunings / Driving Field / Pump Field

Cite this article

Download citation ▾
Zhong-bo Liu, Dian-min Tong, Xi-jun Fan. Effect of SGC on transient evolution of GWI in a Doppler broadened quasi Λ-type four-level system. Optoelectronics Letters, 2012, 8(5): 393-396 DOI:10.1007/s11801-012-2252-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiberatoS. D., CiutiC.. Phys. Rev. Lett., 2009, 102: 136403

[2]

ScullyM. O.. Phys. Rev. Lett., 2010, 104: 207701

[3]

MarthalerM., UtsumiY., GolubevD. S.. Phys. Rev. Lett., 2011, 107: 093901

[4]

LiangY., JiaK.-n., LiuZ.-b., FanX.-j.. Optoelectronics Lett., 2012, 8: 72

[5]

WangC. L., KangZ. H., TianS. C., JiangY., GaoJ. Y.. Phys. Rev. A, 2009, 79: 043810

[6]

OsmanK. I., HassanS. S., JoshiA.. Eur. Phys. J. D, 2009, 54: 119

[7]

YannopapasV., PaspalakisE., VitanovnV.. Phys. Rev. Lett., 2009, 103: 063602

[8]

WangD. S., ZhengY. J.. Phys. Rev. A, 2011, 83: 013810

[9]

LiangY., JiaK.-n., LiuZ.-b., FanX.-j.. Journal of Optoelectronics Laser, 2011, 22: 1886

[10]

FanX. J., LiuZ. B., LiangY., JiaK. N., TongD. M.. Phys. Rev. A, 2011, 83: 043805

[11]

LiuZ. B., WangL., WangZ. D., TongD. M., FanX. J.. Optik, 2011, 122: 150

[12]

HajibadaliA., AbbasianK., RahmatallahpurSh.. Optik, 2012, 123: 1035

[13]

YangY. L., WangL., LiuZ. B., LuH. W., FanX. J.. Acta Physica Sinica, 2009, 58: 3161

[14]

XiaoZ. H., KimK.. Opt. Commun., 2009, 282: 2547

[15]

FanX. J., LiangB., WangZ. D., TongD. M.. Opt. Commun., 2010, 283: 1810

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/