MoO3 as a cathode buffer layer for enhancing the efficiency in white organic light-emitting diodes

Jing Zhang , Fang-hui Zhang , Lei Ding , Yan-fei Li , Tian-jing Liang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 256 -259.

PDF
Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 256 -259. DOI: 10.1007/s11801-012-2241-6
Article

MoO3 as a cathode buffer layer for enhancing the efficiency in white organic light-emitting diodes

Author information +
History +
PDF

Abstract

Molybdenum trioxide (MoO3) as a cathode buffer layer is inserted between LiF and Al to improve the efficiency of white organic light-emitting diodes (OLEDs) in this paper. By changing the MoO3 thickness, a higher current efficiency of 5.79 cd/A is obtained at a current density of 160 mA/cm2 for the device with a 0.8 nm-thick MoO3 layer as the cathode buffer layer, which is approximately two times greater than that of the device without MoO3. The mechanism for improving the device efficiency is discussed. Moreover, at a voltage of 13 V, the device with a 0.8 nm-thick MoO3 layer achieves a higher luminance of 22370 cd/m2, and the Commission Internationale de I’Eclairage (CIE) color coordinate of the device with 1 nm-thick MoO3 layer is (0.33, 0.34), which shows the best color purity. Simple electron-only devices are tested to confirm the impact of the MoO3 layer on the carrier injection.

Keywords

Current Efficiency / Carrier Injection / Device Efficiency / Molybdenum Trioxide / High Current Efficiency

Cite this article

Download citation ▾
Jing Zhang, Fang-hui Zhang, Lei Ding, Yan-fei Li, Tian-jing Liang. MoO3 as a cathode buffer layer for enhancing the efficiency in white organic light-emitting diodes. Optoelectronics Letters, 2012, 8(4): 256-259 DOI:10.1007/s11801-012-2241-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChuC.-W., LiS.-H., ChenC.-W., ShrotriyaV., YangY.. Appl. Phys. Lett., 2005, 87: 193508

[2]

MeyerJ., HamwiS., BülowT., JohannesH. -H., RiedlT., Kowal-skyW.. Appl. Phys. Lett., 2007, 91: 11356

[3]

HopingM., SchildknechtC., GargouriH., RiedlT., TilgnerM., JohannesH.-H., KowalskyW.. Appl. Phys. Lett., 2008, 92: 213306

[4]

DingL., ZhangF.-h., ZhangM.-l., MaY.. Journal of Optoelectronics Laser, 2011, 22: 1761

[5]

YuD.-b., LinH.-p., ZhangX.-w., ZhouF., LiJ., ZhangL., JiangX.-y., ZhangZ.. Journal of Optoelectronics Laser, 2011, 22: 34

[6]

StoelM., StaudigeJ., SteuberF., BlassingJ., SimmererJ., WinnackerA.. Appl. Phys. Lett., 2000, 76: 115

[7]

ZhangX.-W., KhanM. A., JiangX.-Y., CaoJ., ZhuW.-Q., ZhangZ.-L.. Physica B, 2009, 404: 1247

[8]

WuaC.-I., LeeG.-R., PiT.-W.. Appl. Phys. Lett., 2005, 87: 212108

[9]

HungL. S., ZhangR. Q., HeP., MasonG.. J. Phys. D: Appl. Phys., 2002, 35: 103

[10]

KidoJ., MatsumotoT.. Appl. Phys. Lett., 1998, 73: 2886

[11]

PawlikT. D., KondakovD. Y., BegleyW. J., YoungR. H.. Journal of the Society for Information Display, 2010, 18: 277

[12]

KageyamaH., KajiiH., OhmoriY., ShirotaY.. Applied Physics Express, 2011, 4: 032301

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/