MoO3 as a cathode buffer layer for enhancing the efficiency in white organic light-emitting diodes

Jing Zhang, Fang-hui Zhang, Lei Ding, Yan-fei Li, Tian-jing Liang

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 256-259.

Optoelectronics Letters ›› 2012, Vol. 8 ›› Issue (4) : 256-259. DOI: 10.1007/s11801-012-2241-6
Article

MoO3 as a cathode buffer layer for enhancing the efficiency in white organic light-emitting diodes

Author information +
History +

Abstract

Molybdenum trioxide (MoO3) as a cathode buffer layer is inserted between LiF and Al to improve the efficiency of white organic light-emitting diodes (OLEDs) in this paper. By changing the MoO3 thickness, a higher current efficiency of 5.79 cd/A is obtained at a current density of 160 mA/cm2 for the device with a 0.8 nm-thick MoO3 layer as the cathode buffer layer, which is approximately two times greater than that of the device without MoO3. The mechanism for improving the device efficiency is discussed. Moreover, at a voltage of 13 V, the device with a 0.8 nm-thick MoO3 layer achieves a higher luminance of 22370 cd/m2, and the Commission Internationale de I’Eclairage (CIE) color coordinate of the device with 1 nm-thick MoO3 layer is (0.33, 0.34), which shows the best color purity. Simple electron-only devices are tested to confirm the impact of the MoO3 layer on the carrier injection.

Keywords

Current Efficiency / Carrier Injection / Device Efficiency / Molybdenum Trioxide / High Current Efficiency

Cite this article

Download citation ▾
Jing Zhang, Fang-hui Zhang, Lei Ding, Yan-fei Li, Tian-jing Liang. MoO3 as a cathode buffer layer for enhancing the efficiency in white organic light-emitting diodes. Optoelectronics Letters, 2012, 8(4): 256‒259 https://doi.org/10.1007/s11801-012-2241-6

References

[1]
ChuC.-W., LiS.-H., ChenC.-W., ShrotriyaV., YangY.. Appl. Phys. Lett., 2005, 87: 193508
CrossRef Google scholar
[2]
MeyerJ., HamwiS., BülowT., JohannesH. -H., RiedlT., Kowal-skyW.. Appl. Phys. Lett., 2007, 91: 11356
CrossRef Google scholar
[3]
HopingM., SchildknechtC., GargouriH., RiedlT., TilgnerM., JohannesH.-H., KowalskyW.. Appl. Phys. Lett., 2008, 92: 213306
CrossRef Google scholar
[4]
DingL., ZhangF.-h., ZhangM.-l., MaY.. Journal of Optoelectronics Laser, 2011, 22: 1761
[5]
YuD.-b., LinH.-p., ZhangX.-w., ZhouF., LiJ., ZhangL., JiangX.-y., ZhangZ.. Journal of Optoelectronics Laser, 2011, 22: 34
[6]
StoelM., StaudigeJ., SteuberF., BlassingJ., SimmererJ., WinnackerA.. Appl. Phys. Lett., 2000, 76: 115
CrossRef Google scholar
[7]
ZhangX.-W., KhanM. A., JiangX.-Y., CaoJ., ZhuW.-Q., ZhangZ.-L.. Physica B, 2009, 404: 1247
CrossRef Google scholar
[8]
WuaC.-I., LeeG.-R., PiT.-W.. Appl. Phys. Lett., 2005, 87: 212108
CrossRef Google scholar
[9]
HungL. S., ZhangR. Q., HeP., MasonG.. J. Phys. D: Appl. Phys., 2002, 35: 103
CrossRef Google scholar
[10]
KidoJ., MatsumotoT.. Appl. Phys. Lett., 1998, 73: 2886
[11]
PawlikT. D., KondakovD. Y., BegleyW. J., YoungR. H.. Journal of the Society for Information Display, 2010, 18: 277
CrossRef Google scholar
[12]
KageyamaH., KajiiH., OhmoriY., ShirotaY.. Applied Physics Express, 2011, 4: 032301
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.61076066), and the Doctor Foundation of Shaanxi University of Science and Technology (No.BJ09-07).

Accesses

Citations

Detail

Sections
Recommended

/